Abstract

Conversion of optical data from decimal to binary format is very important in optical computing and optical signal processing. There are many binary code systems to represent decimal numbers, the most common being the binary coded decimal (BCD) and gray code system. There are a wide choice of BCD codes, one of which is a natural BCD having a weighted code of 8421, by means of which it is possible to represent a decimal number from 0 to 9 with a combination of 4bit binary digits. The reflected binary code, also known as the Gray code, is a binary numeral system where two successive values differ in only 1bit. The Gray code is very important in digital optical communication as it is used to prevent spurious output from optical switches as well as to facilitate error correction in digital communications in an optical domain. Here in this communication, the author proposes an all-optical frequency encoded method of “:decimal to binary, BCD,” “binary to gray,” and “gray to binary” data conversion using the high-speed switching actions of semiconductor optical amplifiers. To convert decimal numbers to a binary form, a frequency encoding technique is adopted to represent two binary bits, 0 and 1. The frequency encoding technique offers advantages over conventional encoding techniques in terms of less probability of bit errors and greater reliability. Here the author has exploited the polarization switch made of a semi conductor optical amplifier (SOA) and a property of nonlinear rotation of the state of polarization of the probe beam in SOA for frequency conversion to develop the method of frequency encoded data conversion.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Floyd and R. P. Jain, “Number systems, operations, and codes,” in Digital Fundamentals, T.L.Floyd and R.P.Jain, eds., 8th ed. (Pearson, 2009), Chap. 2.
  2. A. K. Maini, Digital Electronics: Principles, Devices and Applications (Wiley, 2007).
  3. Y. Toyohiko, “Optical space-variant logic gate based on spatial encoding technique,” Opt. Lett. 11, 260–262 (1986).
    [CrossRef]
  4. J. Tanida and Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
    [CrossRef] [PubMed]
  5. S. Mukhopadhyay, D. N. Das, and N. Pahari, “An optical method for the addition of binary data by non-linear material,” Appl. Opt. 43, 6147–6150 (2004).
    [CrossRef] [PubMed]
  6. L. Zhihong and L. Guifang, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
    [CrossRef]
  7. Y. A. Zaghloul and A. R. M. Zaghloul, “Unforced polarization based optical implementation of Binary logic,” Opt. Express 14, 7252–7269 (2006).
    [CrossRef] [PubMed]
  8. A. A. S. Awwal and M. A. Karim, “Microprocessor design using polarization encoded optical shadow casting,” Appl. Opt. 29, 2107–2112 (1990).
    [CrossRef] [PubMed]
  9. H. E. Michel and A. A. S. Awwal, “Artificial neural networks using complex numbers and Phase encoded weights,” Appl. Opt. 49, B71–B82 (2010).
    [CrossRef] [PubMed]
  10. B. Chakraborty and S. Mukhopadhyay, “Alternative approach of conducting phase-modulated all-optical logic gates,” Opt. Eng. 48, 035201 (2009).
    [CrossRef]
  11. Y. J. Jung, S. Leeb, and N. Park, “All-optical 4 bit Gray code to binary coded decimal converter,” Proc. SPIE 6890, 68900S(2008).
    [CrossRef]
  12. D. K. Gayen, A. Bhattacharyya, C. Taraphdar, R. K. Pal, and J. N. Roy, “All-optical binary coded decimal adder with a terahertz optical asymmetric demultiplexer,” Comp. Sci. Eng. 13, 50–57 (2011).
  13. S. K. Garai and S. Mukhopadhyay, “Analytical approach of developing the expression of output of all-optical frequency encoded different logical units and a way-out to implement the logic gates,” Opt. Fiber Technol. 16, 250–256 (2010).
    [CrossRef]
  14. S. K. Garai, A. Pal, and S. Mukhopadhyay, “All-optical frequency encoded inversion logic operation with tristate logic using reflecting semiconductor optical amplifiers,” Optik (Jena) 121, 1462–1465 (2010).
    [CrossRef]
  15. H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
    [CrossRef]
  16. S. Fu, W. D. Zhong, P. Shum, C. Wu, and J. Q. Zhou, “Nonlinear polarization rotation in semiconductoroptical amplifiers with linear polarization maintenance,” IEEE Photon. Technol. Lett. 19, 1931–1933 (2007).
    [CrossRef]
  17. Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
    [CrossRef]
  18. H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
    [CrossRef]
  19. S. K. Garai, “A scheme of developing frequency encoded tristate-optical logic operations using semiconductor optical amplifier,” J. Mod. Opt. 57, 419–428 (2010).
    [CrossRef]
  20. L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotationin semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
    [CrossRef]
  21. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).
  22. L. Q. Guo and M. J. Connelly, “All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier,” Opt. Express 14, 2938–2943 (2006).
    [CrossRef] [PubMed]
  23. S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
    [CrossRef]
  24. S. K. Garai and S. Mukhopadhyay, “Method of implementing frequency encoded multiplexer and demultiplexer systems using nonlinear semiconductor optical amplifiers,” Opt. Laser Technol. 41, 972–976 (2009).
    [CrossRef]
  25. R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” presented at the 9th International Conference on Transparent Optical Network (ICTON), Rome, Italy, 1–5 July 2007.
  26. H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
    [CrossRef] [PubMed]
  27. F. Chuan-Fen, W. Jian, Z. Jun-Yi, X. Kun, and L. Jin-Tong, “Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier,” Chinese Phys. B 17 , 1000–1008 (2008).
    [CrossRef]
  28. K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
    [CrossRef]
  29. M. O. Takizawa, “High-speed gray-binary and binary-Gray code converters using electro-optic light modulators,” Electron. Lett. 14, 708–710 (2007).
    [CrossRef]
  30. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

2011 (1)

D. K. Gayen, A. Bhattacharyya, C. Taraphdar, R. K. Pal, and J. N. Roy, “All-optical binary coded decimal adder with a terahertz optical asymmetric demultiplexer,” Comp. Sci. Eng. 13, 50–57 (2011).

2010 (6)

S. K. Garai and S. Mukhopadhyay, “Analytical approach of developing the expression of output of all-optical frequency encoded different logical units and a way-out to implement the logic gates,” Opt. Fiber Technol. 16, 250–256 (2010).
[CrossRef]

S. K. Garai, A. Pal, and S. Mukhopadhyay, “All-optical frequency encoded inversion logic operation with tristate logic using reflecting semiconductor optical amplifiers,” Optik (Jena) 121, 1462–1465 (2010).
[CrossRef]

S. K. Garai, “A scheme of developing frequency encoded tristate-optical logic operations using semiconductor optical amplifier,” J. Mod. Opt. 57, 419–428 (2010).
[CrossRef]

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
[CrossRef]

H. E. Michel and A. A. S. Awwal, “Artificial neural networks using complex numbers and Phase encoded weights,” Appl. Opt. 49, B71–B82 (2010).
[CrossRef] [PubMed]

2009 (3)

S. K. Garai and S. Mukhopadhyay, “Method of implementing frequency encoded multiplexer and demultiplexer systems using nonlinear semiconductor optical amplifiers,” Opt. Laser Technol. 41, 972–976 (2009).
[CrossRef]

T. L. Floyd and R. P. Jain, “Number systems, operations, and codes,” in Digital Fundamentals, T.L.Floyd and R.P.Jain, eds., 8th ed. (Pearson, 2009), Chap. 2.

B. Chakraborty and S. Mukhopadhyay, “Alternative approach of conducting phase-modulated all-optical logic gates,” Opt. Eng. 48, 035201 (2009).
[CrossRef]

2008 (2)

Y. J. Jung, S. Leeb, and N. Park, “All-optical 4 bit Gray code to binary coded decimal converter,” Proc. SPIE 6890, 68900S(2008).
[CrossRef]

F. Chuan-Fen, W. Jian, Z. Jun-Yi, X. Kun, and L. Jin-Tong, “Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier,” Chinese Phys. B 17 , 1000–1008 (2008).
[CrossRef]

2007 (4)

A. K. Maini, Digital Electronics: Principles, Devices and Applications (Wiley, 2007).

M. O. Takizawa, “High-speed gray-binary and binary-Gray code converters using electro-optic light modulators,” Electron. Lett. 14, 708–710 (2007).
[CrossRef]

L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotationin semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
[CrossRef]

S. Fu, W. D. Zhong, P. Shum, C. Wu, and J. Q. Zhou, “Nonlinear polarization rotation in semiconductoroptical amplifiers with linear polarization maintenance,” IEEE Photon. Technol. Lett. 19, 1931–1933 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (2)

S. Mukhopadhyay, D. N. Das, and N. Pahari, “An optical method for the addition of binary data by non-linear material,” Appl. Opt. 43, 6147–6150 (2004).
[CrossRef] [PubMed]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

2003 (2)

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

2002 (1)

M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).

1990 (1)

1986 (2)

Awwal, A. A. S.

Bhardwaj, A.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

Bhattacharyya, A.

D. K. Gayen, A. Bhattacharyya, C. Taraphdar, R. K. Pal, and J. N. Roy, “All-optical binary coded decimal adder with a terahertz optical asymmetric demultiplexer,” Comp. Sci. Eng. 13, 50–57 (2011).

Cabot, S.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

Calabretta, N.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Chakraborty, B.

B. Chakraborty and S. Mukhopadhyay, “Alternative approach of conducting phase-modulated all-optical logic gates,” Opt. Eng. 48, 035201 (2009).
[CrossRef]

Chuan-Fen, F.

F. Chuan-Fen, W. Jian, Z. Jun-Yi, X. Kun, and L. Jin-Tong, “Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier,” Chinese Phys. B 17 , 1000–1008 (2008).
[CrossRef]

Connelly, M. J.

L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotationin semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
[CrossRef]

L. Q. Guo and M. J. Connelly, “All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier,” Opt. Express 14, 2938–2943 (2006).
[CrossRef] [PubMed]

M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).

Cotter, D.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” presented at the 9th International Conference on Transparent Optical Network (ICTON), Rome, Italy, 1–5 July 2007.

Das, D. N.

de Waardt, H.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef] [PubMed]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Dorren, H. J. S.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef] [PubMed]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Floyd, T. L.

T. L. Floyd and R. P. Jain, “Number systems, operations, and codes,” in Digital Fundamentals, T.L.Floyd and R.P.Jain, eds., 8th ed. (Pearson, 2009), Chap. 2.

Fu, S.

S. Fu, W. D. Zhong, P. Shum, C. Wu, and J. Q. Zhou, “Nonlinear polarization rotation in semiconductoroptical amplifiers with linear polarization maintenance,” IEEE Photon. Technol. Lett. 19, 1931–1933 (2007).
[CrossRef]

Garai, S. K.

S. K. Garai, A. Pal, and S. Mukhopadhyay, “All-optical frequency encoded inversion logic operation with tristate logic using reflecting semiconductor optical amplifiers,” Optik (Jena) 121, 1462–1465 (2010).
[CrossRef]

S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
[CrossRef]

S. K. Garai and S. Mukhopadhyay, “Analytical approach of developing the expression of output of all-optical frequency encoded different logical units and a way-out to implement the logic gates,” Opt. Fiber Technol. 16, 250–256 (2010).
[CrossRef]

S. K. Garai, “A scheme of developing frequency encoded tristate-optical logic operations using semiconductor optical amplifier,” J. Mod. Opt. 57, 419–428 (2010).
[CrossRef]

S. K. Garai and S. Mukhopadhyay, “Method of implementing frequency encoded multiplexer and demultiplexer systems using nonlinear semiconductor optical amplifiers,” Opt. Laser Technol. 41, 972–976 (2009).
[CrossRef]

Gayen, D. K.

D. K. Gayen, A. Bhattacharyya, C. Taraphdar, R. K. Pal, and J. N. Roy, “All-optical binary coded decimal adder with a terahertz optical asymmetric demultiplexer,” Comp. Sci. Eng. 13, 50–57 (2011).

Giller, R.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” presented at the 9th International Conference on Transparent Optical Network (ICTON), Rome, Italy, 1–5 July 2007.

Gomez-Agis, F.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

Guifang, L.

L. Zhihong and L. Guifang, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[CrossRef]

Guo, L. Q.

L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotationin semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
[CrossRef]

L. Q. Guo and M. J. Connelly, “All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier,” Opt. Express 14, 2938–2943 (2006).
[CrossRef] [PubMed]

Hasama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Hill, M. T.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Ichioka, Y.

Ishikawa, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Jain, R. P.

T. L. Floyd and R. P. Jain, “Number systems, operations, and codes,” in Digital Fundamentals, T.L.Floyd and R.P.Jain, eds., 8th ed. (Pearson, 2009), Chap. 2.

Jaques, J.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

Jian, W.

F. Chuan-Fen, W. Jian, Z. Jun-Yi, X. Kun, and L. Jin-Tong, “Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier,” Chinese Phys. B 17 , 1000–1008 (2008).
[CrossRef]

Jin-Tong, L.

F. Chuan-Fen, W. Jian, Z. Jun-Yi, X. Kun, and L. Jin-Tong, “Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier,” Chinese Phys. B 17 , 1000–1008 (2008).
[CrossRef]

Ju, H.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef] [PubMed]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Jung, Y. J.

Y. J. Jung, S. Leeb, and N. Park, “All-optical 4 bit Gray code to binary coded decimal converter,” Proc. SPIE 6890, 68900S(2008).
[CrossRef]

Jun-Yi, Z.

F. Chuan-Fen, W. Jian, Z. Jun-Yi, X. Kun, and L. Jin-Tong, “Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier,” Chinese Phys. B 17 , 1000–1008 (2008).
[CrossRef]

Kang, I.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

Karim, M. A.

Kawashima, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Khoe, G. D.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef] [PubMed]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Khoe, G.-D.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Kun, X.

F. Chuan-Fen, W. Jian, Z. Jun-Yi, X. Kun, and L. Jin-Tong, “Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier,” Chinese Phys. B 17 , 1000–1008 (2008).
[CrossRef]

Leeb, S.

Y. J. Jung, S. Leeb, and N. Park, “All-optical 4 bit Gray code to binary coded decimal converter,” Proc. SPIE 6890, 68900S(2008).
[CrossRef]

Lenstra, D.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef] [PubMed]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Li, Z.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Liu, Y.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Maini, A. K.

A. K. Maini, Digital Electronics: Principles, Devices and Applications (Wiley, 2007).

Manning, R. J.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” presented at the 9th International Conference on Transparent Optical Network (ICTON), Rome, Italy, 1–5 July 2007.

Michel, H. E.

Mishra, A. K.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Mukhopadhyay, S.

S. K. Garai and S. Mukhopadhyay, “Analytical approach of developing the expression of output of all-optical frequency encoded different logical units and a way-out to implement the logic gates,” Opt. Fiber Technol. 16, 250–256 (2010).
[CrossRef]

S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
[CrossRef]

S. K. Garai, A. Pal, and S. Mukhopadhyay, “All-optical frequency encoded inversion logic operation with tristate logic using reflecting semiconductor optical amplifiers,” Optik (Jena) 121, 1462–1465 (2010).
[CrossRef]

B. Chakraborty and S. Mukhopadhyay, “Alternative approach of conducting phase-modulated all-optical logic gates,” Opt. Eng. 48, 035201 (2009).
[CrossRef]

S. K. Garai and S. Mukhopadhyay, “Method of implementing frequency encoded multiplexer and demultiplexer systems using nonlinear semiconductor optical amplifiers,” Opt. Laser Technol. 41, 972–976 (2009).
[CrossRef]

S. Mukhopadhyay, D. N. Das, and N. Pahari, “An optical method for the addition of binary data by non-linear material,” Appl. Opt. 43, 6147–6150 (2004).
[CrossRef] [PubMed]

Neilson, D. T.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

Pahari, N.

Pal, A.

S. K. Garai, A. Pal, and S. Mukhopadhyay, “All-optical frequency encoded inversion logic operation with tristate logic using reflecting semiconductor optical amplifiers,” Optik (Jena) 121, 1462–1465 (2010).
[CrossRef]

Pal, R. K.

D. K. Gayen, A. Bhattacharyya, C. Taraphdar, R. K. Pal, and J. N. Roy, “All-optical binary coded decimal adder with a terahertz optical asymmetric demultiplexer,” Comp. Sci. Eng. 13, 50–57 (2011).

Park, N.

Y. J. Jung, S. Leeb, and N. Park, “All-optical 4 bit Gray code to binary coded decimal converter,” Proc. SPIE 6890, 68900S(2008).
[CrossRef]

Roy, J. N.

D. K. Gayen, A. Bhattacharyya, C. Taraphdar, R. K. Pal, and J. N. Roy, “All-optical binary coded decimal adder with a terahertz optical asymmetric demultiplexer,” Comp. Sci. Eng. 13, 50–57 (2011).

Sauer, N.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

Sheng, Z.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

Shum, P.

S. Fu, W. D. Zhong, P. Shum, C. Wu, and J. Q. Zhou, “Nonlinear polarization rotation in semiconductoroptical amplifiers with linear polarization maintenance,” IEEE Photon. Technol. Lett. 19, 1931–1933 (2007).
[CrossRef]

Simoyama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Stampoulidis, L.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

Takizawa, M. O.

M. O. Takizawa, “High-speed gray-binary and binary-Gray code converters using electro-optic light modulators,” Electron. Lett. 14, 708–710 (2007).
[CrossRef]

Tangdiongga, E.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef] [PubMed]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Tanida, J.

Taraphdar, C.

D. K. Gayen, A. Bhattacharyya, C. Taraphdar, R. K. Pal, and J. N. Roy, “All-optical binary coded decimal adder with a terahertz optical asymmetric demultiplexer,” Comp. Sci. Eng. 13, 50–57 (2011).

Thourhout, D. V.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

Toyohiko, Y.

Voigt, F. K.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

Vyrsokinos, K.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

Wahlbrink, T.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

Webb, R. P.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” presented at the 9th International Conference on Transparent Optical Network (ICTON), Rome, Italy, 1–5 July 2007.

Wu, C.

S. Fu, W. D. Zhong, P. Shum, C. Wu, and J. Q. Zhou, “Nonlinear polarization rotation in semiconductoroptical amplifiers with linear polarization maintenance,” IEEE Photon. Technol. Lett. 19, 1931–1933 (2007).
[CrossRef]

Yang, X.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” presented at the 9th International Conference on Transparent Optical Network (ICTON), Rome, Italy, 1–5 July 2007.

Zaghloul, A. R. M.

Zaghloul, Y. A.

Zhang, L.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

Zhang, S.

Zhihong, L.

L. Zhihong and L. Guifang, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[CrossRef]

Zhong, W. D.

S. Fu, W. D. Zhong, P. Shum, C. Wu, and J. Q. Zhou, “Nonlinear polarization rotation in semiconductoroptical amplifiers with linear polarization maintenance,” IEEE Photon. Technol. Lett. 19, 1931–1933 (2007).
[CrossRef]

Zhou, J. Q.

S. Fu, W. D. Zhong, P. Shum, C. Wu, and J. Q. Zhou, “Nonlinear polarization rotation in semiconductoroptical amplifiers with linear polarization maintenance,” IEEE Photon. Technol. Lett. 19, 1931–1933 (2007).
[CrossRef]

Zimmermann, L.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

Appl. Opt. (4)

Chinese Phys. B (1)

F. Chuan-Fen, W. Jian, Z. Jun-Yi, X. Kun, and L. Jin-Tong, “Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier,” Chinese Phys. B 17 , 1000–1008 (2008).
[CrossRef]

Comp. Sci. Eng. (1)

D. K. Gayen, A. Bhattacharyya, C. Taraphdar, R. K. Pal, and J. N. Roy, “All-optical binary coded decimal adder with a terahertz optical asymmetric demultiplexer,” Comp. Sci. Eng. 13, 50–57 (2011).

Electron. Lett. (1)

M. O. Takizawa, “High-speed gray-binary and binary-Gray code converters using electro-optic light modulators,” Electron. Lett. 14, 708–710 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Fu, W. D. Zhong, P. Shum, C. Wu, and J. Q. Zhou, “Nonlinear polarization rotation in semiconductoroptical amplifiers with linear polarization maintenance,” IEEE Photon. Technol. Lett. 19, 1931–1933 (2007).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

L. Zhihong and L. Guifang, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[CrossRef]

J. Mod. Opt. (1)

S. K. Garai, “A scheme of developing frequency encoded tristate-optical logic operations using semiconductor optical amplifier,” J. Mod. Opt. 57, 419–428 (2010).
[CrossRef]

Opt. Eng. (1)

B. Chakraborty and S. Mukhopadhyay, “Alternative approach of conducting phase-modulated all-optical logic gates,” Opt. Eng. 48, 035201 (2009).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

S. K. Garai and S. Mukhopadhyay, “Analytical approach of developing the expression of output of all-optical frequency encoded different logical units and a way-out to implement the logic gates,” Opt. Fiber Technol. 16, 250–256 (2010).
[CrossRef]

Opt. Laser Technol. (2)

S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
[CrossRef]

S. K. Garai and S. Mukhopadhyay, “Method of implementing frequency encoded multiplexer and demultiplexer systems using nonlinear semiconductor optical amplifiers,” Opt. Laser Technol. 41, 972–976 (2009).
[CrossRef]

Opt. Lett. (1)

Optik (Jena) (1)

S. K. Garai, A. Pal, and S. Mukhopadhyay, “All-optical frequency encoded inversion logic operation with tristate logic using reflecting semiconductor optical amplifiers,” Optik (Jena) 121, 1462–1465 (2010).
[CrossRef]

Proc. SPIE (2)

Y. J. Jung, S. Leeb, and N. Park, “All-optical 4 bit Gray code to binary coded decimal converter,” Proc. SPIE 6890, 68900S(2008).
[CrossRef]

L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotationin semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
[CrossRef]

Other (6)

M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” presented at the 9th International Conference on Transparent Optical Network (ICTON), Rome, Italy, 1–5 July 2007.

K. Vyrsokinos, L. Stampoulidis, F. Gomez-Agis, F. K. Voigt, L. Zimmermann, T. Wahlbrink, Z. Sheng, D. V. Thourhout, and H. J. S. Dorren, “Ultra-high speed, all-optical wavelength converters using single SOA and SOI photonic integrated circuits,” in Photonics Society Winter Topicals Meeting Series (IEEE, 2010), pp. 113–114.
[CrossRef]

T. L. Floyd and R. P. Jain, “Number systems, operations, and codes,” in Digital Fundamentals, T.L.Floyd and R.P.Jain, eds., 8th ed. (Pearson, 2009), Chap. 2.

A. K. Maini, Digital Electronics: Principles, Devices and Applications (Wiley, 2007).

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” presented at the 32nd European Conference on Optical Communication (ECOC), Cannes, France, 24–28 September 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SOA acting as a polarization switch.

Fig. 2
Fig. 2

Conversion from a decimal to frequency encoded binary data.

Fig. 3
Fig. 3

All-optical decimal to frequency encoded BCD converter.

Fig. 4
Fig. 4

Block diagram of an all-optical decimal to frequency encoded BCD converter.

Fig. 5
Fig. 5

All-optical decimal to a frequency encoded BCD converter (N digit decimal number).

Fig. 6
Fig. 6

All-optical decimal to a frequency encoded binary number.

Fig. 7
Fig. 7

Frequency encoded XOR logic gate.

Fig. 8
Fig. 8

Block diagram of X-OR logic gate.

Fig. 9
Fig. 9

All-optical binary to gray code converter.

Fig. 10
Fig. 10

All-optical gray code to binary converter.

Tables (3)

Tables Icon

Table 1 Presentation of Decimal Numbers in Different Coding Systems in Terms of Binary Bits (0, 1) and ( ν 1 , ν 2 )

Tables Icon

Table 2 Some Useful Parameters of Tensile Strained SOA

Tables Icon

Table 3 Decimal to Binary Conversion Scheme in Tabular Form

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N x = N f 1 + f and N y = N 1 + f ,
S out = S TE + S TM + 2 S TE S TM cos φ ,
S TM = S in TM . exp [ Γ TM g TM α in TM ] / ( L / v g TM ) ,
φ = φ TE φ TM = 1 2 [ α TE Γ TE g TE v g TE α TM Γ TM g TM v g TM ] L ,

Metrics