Abstract

Digital shearography based on Michelson interferometers suffers from the disadvantage of a small angle of view due to the structure. We demonstrate a novel digital shearography system with a large angle of view. In the optical arrangement, the imaging lens is in front of the Michelson interferometer rather than behind it as in traditional digital shearography. Thus, the angle of view is no longer limited by the Michelson interferometer. The images transmitting between the separate lens and camera are accomplished by a 4f system in the new style of shearography. The influences of the 4f system on shearography are also discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).
    [CrossRef]
  2. A. Andersson, N. K. Mohan, M. Sjodahl, and N. Molin, “TV shearography: quantitative measurement of shear-magnitude fields by use of digital speckle photography,” Appl. Opt. 39, 2565–2568 (2000).
    [CrossRef]
  3. B. Bhaduri, N. K. Mohan, M. P. Kothiyal, and R. S. Sirohi, “Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS),” Opt. Express 14, 11598–11607 (2006).
    [CrossRef] [PubMed]
  4. L. Yang, F. Chen, W. Steinchen, and Y. Y. Hung, “Digital shearography for nondestructive testing: potentials, limitations and applications,” J. Holography Speckle 1, 69–79(2004).
    [CrossRef]
  5. L. Yang, “Recent developments in digital shearography for nondestructive testing,” Mater. Eval. 64, 704–709(2006).
  6. C. Sun, J. Chen, and H. Lu, “Improved phase-shifted digital speckle shearography for time-dependent deformation measurement,” Opt. Eng. 47, 065601 (2008).
    [CrossRef]
  7. Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
    [CrossRef]
  8. C. J. Tay and Y. Fu, “Determination of curvature and twist by digital shearography and wavelet transforms,” Opt. Lett. 30, 2873–2875 (2005).
    [CrossRef] [PubMed]
  9. U. P. Kumar, M. P. Kothiyal, and N. K. Mohan, “Microscopic TV shearography for characterization of microsystems,” Opt. Lett. 34, 1612–1614 (2009).
    [CrossRef]
  10. Y. Y. Hung and C. Y. Liang, “Image-shearing camera for direct measurement of surface strains,” Appl. Opt. 18, 1046–1051(1979).
    [CrossRef] [PubMed]
  11. B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Curvature measurement using three-aperture digital shearography and fast Fourier transform,” Opt. Lasers Eng. 45, 1001–1004(2007).
    [CrossRef]
  12. N. A. Ochoa and A. A. Silva-Moreno, “Fringes demodulation in time-averaged digital shearography using genetic algorithms,” Opt. Commun. 260, 434–437 (2006).
    [CrossRef]
  13. S. Kim, “Polarization phase-shifting technique in shearographic system with a wollaston prism,” J. Opt. Soc. Korea 8, 122–126 (2004).
    [CrossRef]
  14. Y. Y. Hung, Y. H. Huang, L. Liu, S. P. Ng, and Y. S. Chen, “Computerized tomography technique for reconstruction of obstructed phase data in shearography,” Appl. Opt. 47, 3158–3167 (2008).
    [CrossRef] [PubMed]
  15. E. Mihaylova, M. Whelan, and V. Toal, “Simple phase-shifting lateral shearing interferometer,” Opt. Lett. 29, 1264–1266(2004).
    [CrossRef] [PubMed]
  16. W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE, 2003).
  17. V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
    [CrossRef]
  18. A. Davila, J. Huntley, G. Kaufmann, and D. Kerr, “High-speed dynamic speckle interferometry: phase errors due to intensity, velocity, and speckle decorrelation,” Appl. Opt. 44, 3954–3962(2005).
    [CrossRef] [PubMed]
  19. L. X. Yang, M. Schuth, D. Thomas, Y. H. Wang, and F. Voesing, “Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem,” Opt. Lasers Eng. 47, 252–258 (2009).
    [CrossRef]

2010 (1)

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).
[CrossRef]

2009 (3)

Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
[CrossRef]

U. P. Kumar, M. P. Kothiyal, and N. K. Mohan, “Microscopic TV shearography for characterization of microsystems,” Opt. Lett. 34, 1612–1614 (2009).
[CrossRef]

L. X. Yang, M. Schuth, D. Thomas, Y. H. Wang, and F. Voesing, “Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem,” Opt. Lasers Eng. 47, 252–258 (2009).
[CrossRef]

2008 (2)

Y. Y. Hung, Y. H. Huang, L. Liu, S. P. Ng, and Y. S. Chen, “Computerized tomography technique for reconstruction of obstructed phase data in shearography,” Appl. Opt. 47, 3158–3167 (2008).
[CrossRef] [PubMed]

C. Sun, J. Chen, and H. Lu, “Improved phase-shifted digital speckle shearography for time-dependent deformation measurement,” Opt. Eng. 47, 065601 (2008).
[CrossRef]

2007 (2)

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Curvature measurement using three-aperture digital shearography and fast Fourier transform,” Opt. Lasers Eng. 45, 1001–1004(2007).
[CrossRef]

2006 (3)

N. A. Ochoa and A. A. Silva-Moreno, “Fringes demodulation in time-averaged digital shearography using genetic algorithms,” Opt. Commun. 260, 434–437 (2006).
[CrossRef]

L. Yang, “Recent developments in digital shearography for nondestructive testing,” Mater. Eval. 64, 704–709(2006).

B. Bhaduri, N. K. Mohan, M. P. Kothiyal, and R. S. Sirohi, “Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS),” Opt. Express 14, 11598–11607 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

2003 (1)

W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE, 2003).

2000 (1)

1979 (1)

Andersson, A.

Bhaduri, B.

B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Curvature measurement using three-aperture digital shearography and fast Fourier transform,” Opt. Lasers Eng. 45, 1001–1004(2007).
[CrossRef]

B. Bhaduri, N. K. Mohan, M. P. Kothiyal, and R. S. Sirohi, “Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS),” Opt. Express 14, 11598–11607 (2006).
[CrossRef] [PubMed]

Chen, F.

L. Yang, F. Chen, W. Steinchen, and Y. Y. Hung, “Digital shearography for nondestructive testing: potentials, limitations and applications,” J. Holography Speckle 1, 69–79(2004).
[CrossRef]

Chen, J.

C. Sun, J. Chen, and H. Lu, “Improved phase-shifted digital speckle shearography for time-dependent deformation measurement,” Opt. Eng. 47, 065601 (2008).
[CrossRef]

Chen, Y. S.

Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
[CrossRef]

Y. Y. Hung, Y. H. Huang, L. Liu, S. P. Ng, and Y. S. Chen, “Computerized tomography technique for reconstruction of obstructed phase data in shearography,” Appl. Opt. 47, 3158–3167 (2008).
[CrossRef] [PubMed]

Davila, A.

Francis, D.

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).
[CrossRef]

Fu, Y.

Groves, R. M.

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).
[CrossRef]

Habraken, S.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Huang, Y. H.

Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
[CrossRef]

Y. Y. Hung, Y. H. Huang, L. Liu, S. P. Ng, and Y. S. Chen, “Computerized tomography technique for reconstruction of obstructed phase data in shearography,” Appl. Opt. 47, 3158–3167 (2008).
[CrossRef] [PubMed]

Hung, Y. Y.

Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
[CrossRef]

Y. Y. Hung, Y. H. Huang, L. Liu, S. P. Ng, and Y. S. Chen, “Computerized tomography technique for reconstruction of obstructed phase data in shearography,” Appl. Opt. 47, 3158–3167 (2008).
[CrossRef] [PubMed]

L. Yang, F. Chen, W. Steinchen, and Y. Y. Hung, “Digital shearography for nondestructive testing: potentials, limitations and applications,” J. Holography Speckle 1, 69–79(2004).
[CrossRef]

Y. Y. Hung and C. Y. Liang, “Image-shearing camera for direct measurement of surface strains,” Appl. Opt. 18, 1046–1051(1979).
[CrossRef] [PubMed]

Huntley, J.

Kaufmann, G.

Kerr, D.

Kim, S.

Kothiyal, M. P.

Kumar, U. P.

Li, C. L.

Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
[CrossRef]

Liang, C. Y.

Lion, Y.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Liu, L.

Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
[CrossRef]

Y. Y. Hung, Y. H. Huang, L. Liu, S. P. Ng, and Y. S. Chen, “Computerized tomography technique for reconstruction of obstructed phase data in shearography,” Appl. Opt. 47, 3158–3167 (2008).
[CrossRef] [PubMed]

Lu, H.

C. Sun, J. Chen, and H. Lu, “Improved phase-shifted digital speckle shearography for time-dependent deformation measurement,” Opt. Eng. 47, 065601 (2008).
[CrossRef]

Michel, F.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Mihaylova, E.

Mohan, N. K.

Molin, N.

Moreau, V.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Ng, S. P.

Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
[CrossRef]

Y. Y. Hung, Y. H. Huang, L. Liu, S. P. Ng, and Y. S. Chen, “Computerized tomography technique for reconstruction of obstructed phase data in shearography,” Appl. Opt. 47, 3158–3167 (2008).
[CrossRef] [PubMed]

Ochoa, N. A.

N. A. Ochoa and A. A. Silva-Moreno, “Fringes demodulation in time-averaged digital shearography using genetic algorithms,” Opt. Commun. 260, 434–437 (2006).
[CrossRef]

Renotte, Y.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Rosso, V.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Schuth, M.

L. X. Yang, M. Schuth, D. Thomas, Y. H. Wang, and F. Voesing, “Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem,” Opt. Lasers Eng. 47, 252–258 (2009).
[CrossRef]

Silva-Moreno, A. A.

N. A. Ochoa and A. A. Silva-Moreno, “Fringes demodulation in time-averaged digital shearography using genetic algorithms,” Opt. Commun. 260, 434–437 (2006).
[CrossRef]

Sirohi, R. S.

Sjodahl, M.

Steinchen, W.

L. Yang, F. Chen, W. Steinchen, and Y. Y. Hung, “Digital shearography for nondestructive testing: potentials, limitations and applications,” J. Holography Speckle 1, 69–79(2004).
[CrossRef]

W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE, 2003).

Sun, C.

C. Sun, J. Chen, and H. Lu, “Improved phase-shifted digital speckle shearography for time-dependent deformation measurement,” Opt. Eng. 47, 065601 (2008).
[CrossRef]

Tatam, R. P.

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).
[CrossRef]

Tay, C. J.

Thomas, D.

L. X. Yang, M. Schuth, D. Thomas, Y. H. Wang, and F. Voesing, “Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem,” Opt. Lasers Eng. 47, 252–258 (2009).
[CrossRef]

Tilkens, B.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Toal, V.

Voesing, F.

L. X. Yang, M. Schuth, D. Thomas, Y. H. Wang, and F. Voesing, “Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem,” Opt. Lasers Eng. 47, 252–258 (2009).
[CrossRef]

Wang, Y. H.

L. X. Yang, M. Schuth, D. Thomas, Y. H. Wang, and F. Voesing, “Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem,” Opt. Lasers Eng. 47, 252–258 (2009).
[CrossRef]

Whelan, M.

Yang, L.

L. Yang, “Recent developments in digital shearography for nondestructive testing,” Mater. Eval. 64, 704–709(2006).

L. Yang, F. Chen, W. Steinchen, and Y. Y. Hung, “Digital shearography for nondestructive testing: potentials, limitations and applications,” J. Holography Speckle 1, 69–79(2004).
[CrossRef]

W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE, 2003).

Yang, L. X.

L. X. Yang, M. Schuth, D. Thomas, Y. H. Wang, and F. Voesing, “Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem,” Opt. Lasers Eng. 47, 252–258 (2009).
[CrossRef]

Appl. Opt. (4)

J. Holography Speckle (1)

L. Yang, F. Chen, W. Steinchen, and Y. Y. Hung, “Digital shearography for nondestructive testing: potentials, limitations and applications,” J. Holography Speckle 1, 69–79(2004).
[CrossRef]

J. Opt. Soc. Korea (1)

Mater. Eval. (1)

L. Yang, “Recent developments in digital shearography for nondestructive testing,” Mater. Eval. 64, 704–709(2006).

Meas. Sci. Technol. (1)

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).
[CrossRef]

Opt. Commun. (1)

N. A. Ochoa and A. A. Silva-Moreno, “Fringes demodulation in time-averaged digital shearography using genetic algorithms,” Opt. Commun. 260, 434–437 (2006).
[CrossRef]

Opt. Eng. (2)

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

C. Sun, J. Chen, and H. Lu, “Improved phase-shifted digital speckle shearography for time-dependent deformation measurement,” Opt. Eng. 47, 065601 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (3)

B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Curvature measurement using three-aperture digital shearography and fast Fourier transform,” Opt. Lasers Eng. 45, 1001–1004(2007).
[CrossRef]

Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung, “NDT&E using shearography with impulsive thermal stressing and clustering phase extraction,” Opt. Lasers Eng. 47, 774–781 (2009).
[CrossRef]

L. X. Yang, M. Schuth, D. Thomas, Y. H. Wang, and F. Voesing, “Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem,” Opt. Lasers Eng. 47, 252–258 (2009).
[CrossRef]

Opt. Lett. (3)

Other (1)

W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of traditional Michelson- interferometer-based digital shearography.

Fig. 2
Fig. 2

Optical arrangement of novel Michelson- interferometer-based digital shearography with a 4 f system.

Fig. 3
Fig. 3

Fourier transform and inverse Fourier transform in a 4 f system.

Fig. 4
Fig. 4

Schematic diagram of the convolution operation between input image and function of transmittance.

Fig. 5
Fig. 5

Comparison experiments: (a) real-time subtraction using digital shearography with a 4 f system; (b) real-time subtraction using digital shearography without a 4 f system; (c) phase map obtained by digital shearography with a 4 f system; (d) phase map obtained by digital shearography without a 4 f system.

Fig. 6
Fig. 6

Applications of digital shearography with a 4 f system: (a) nondestructive inspection; (b) vibration analysis using time-averaged method; (c) phase map of the vibration obtained by using stroboscopic illumination; (d) vibration amplitude slope distribution obtained by using stroboscopic illumination.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α = 2 tan 1 a 2 ( 2 a + d 1 + 2 d 2 ) ,
α = 2 tan 1 h 2 f ,
t ( x , y ) = { 1 ; p 2 < x , y < p 2 0 ; other ,
f ( x , y ) = f ( x , y ) t ( x , y ) ,
f ( x , y ) = x p 2 x + p 2 y p 2 y + p 2 f ( u , v ) d u d v .
f ( u , v ) = { I ; q 2 < u , v < q 2 0 ; other ,

Metrics