Abstract

We report a photothermal delivery of microscopic objects based on convection flows at the surface of water. The convection flows were induced by photothermal effect through a laser beam of 1.55μm wavelength from a fiber tip. A 206μm diameter oil drop was delivered forward and backward by changing the laser beam at a power of 28.540mW. In addition, the delivery has been further demonstrated with a cluster of carbon and red blood cells at the laser powers of 14 and 20mW, respectively.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
    [CrossRef] [PubMed]
  4. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  5. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
    [CrossRef] [PubMed]
  6. C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
    [CrossRef]
  7. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
    [CrossRef] [PubMed]
  8. R. Dasgupta, S. Ahlawat, and P. K. Gupta, “Trapping of micron-sized objects at a liquid–air interface,” J. Opt. A: Pure Appl. Opt. 9, S189–S195 (2007).
    [CrossRef]
  9. Y. Liu and A. W. Poon, “Flow-assisted single-beam optothermal manipulation of microparticles,” Opt. Express 18, 18483–18491 (2010).
    [CrossRef] [PubMed]
  10. E. Yakhshi-Tafti, H. J. Cho, and R. Kumar, “Droplet actuation on a liquid layer due to thermocapillary motion: shape effect,” Appl. Phys. Lett. 96, 264101 (2010).
    [CrossRef]
  11. E. Vela, M. Hafez, and S. Régnier, “Laser-induced thermocapillary convection for mesoscale manipulation,” Int. J. Optomechatron. 3, 289–302 (2009).
    [CrossRef]
  12. C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Phys. Rev. E 75, 046302 (2007).
    [CrossRef]
  13. M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Appl. Phys. Lett. 93, 034107 (2008).
    [CrossRef]
  14. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32(2005).
    [CrossRef] [PubMed]
  15. T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37, 249–253 (1997).
    [CrossRef] [PubMed]
  16. F. J. Higuera, “Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above,” Phys. Fluids 12, 2186–2197 (2000).
    [CrossRef]
  17. C. M. Vest, “Analysis of laser-induced convection in unconfined fluids and in vertical cylinders,” Phys. Fluids 17, 1945–1950(1974)
    [CrossRef]
  18. P. Singh and D. D. Joseph, “Fluid dynamics of floating particles,” J. Fluid Mech. 530, 31–80 (2005).
    [CrossRef]
  19. A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
    [CrossRef]
  20. H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19, 2711–2719 (2011).
    [CrossRef] [PubMed]
  21. H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip doi: 10.1039/C1LC20272C (2011).
    [PubMed]

2011 (2)

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19, 2711–2719 (2011).
[CrossRef] [PubMed]

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip doi: 10.1039/C1LC20272C (2011).
[PubMed]

2010 (2)

Y. Liu and A. W. Poon, “Flow-assisted single-beam optothermal manipulation of microparticles,” Opt. Express 18, 18483–18491 (2010).
[CrossRef] [PubMed]

E. Yakhshi-Tafti, H. J. Cho, and R. Kumar, “Droplet actuation on a liquid layer due to thermocapillary motion: shape effect,” Appl. Phys. Lett. 96, 264101 (2010).
[CrossRef]

2009 (2)

E. Vela, M. Hafez, and S. Régnier, “Laser-induced thermocapillary convection for mesoscale manipulation,” Int. J. Optomechatron. 3, 289–302 (2009).
[CrossRef]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[CrossRef] [PubMed]

2008 (1)

M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Appl. Phys. Lett. 93, 034107 (2008).
[CrossRef]

2007 (3)

R. Dasgupta, S. Ahlawat, and P. K. Gupta, “Trapping of micron-sized objects at a liquid–air interface,” J. Opt. A: Pure Appl. Opt. 9, S189–S195 (2007).
[CrossRef]

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[CrossRef]

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Phys. Rev. E 75, 046302 (2007).
[CrossRef]

2005 (2)

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32(2005).
[CrossRef] [PubMed]

P. Singh and D. D. Joseph, “Fluid dynamics of floating particles,” J. Fluid Mech. 530, 31–80 (2005).
[CrossRef]

2003 (2)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

2000 (1)

F. J. Higuera, “Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above,” Phys. Fluids 12, 2186–2197 (2000).
[CrossRef]

1997 (1)

T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37, 249–253 (1997).
[CrossRef] [PubMed]

1996 (1)

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

1987 (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

1974 (1)

C. M. Vest, “Analysis of laser-induced convection in unconfined fluids and in vertical cylinders,” Phys. Fluids 17, 1945–1950(1974)
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ahlawat, S.

R. Dasgupta, S. Ahlawat, and P. K. Gupta, “Trapping of micron-sized objects at a liquid–air interface,” J. Opt. A: Pure Appl. Opt. 9, S189–S195 (2007).
[CrossRef]

Angelis, F. D.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Baroud, C. N.

M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Appl. Phys. Lett. 93, 034107 (2008).
[CrossRef]

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Phys. Rev. E 75, 046302 (2007).
[CrossRef]

Bragheri, F.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[CrossRef]

Burnham, D. R.

M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Appl. Phys. Lett. 93, 034107 (2008).
[CrossRef]

Cho, H. J.

E. Yakhshi-Tafti, H. J. Cho, and R. Kumar, “Droplet actuation on a liquid layer due to thermocapillary motion: shape effect,” Appl. Phys. Lett. 96, 264101 (2010).
[CrossRef]

Cordero, M. L.

M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Appl. Phys. Lett. 93, 034107 (2008).
[CrossRef]

Cristiani, I.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[CrossRef]

Dasgupta, R.

R. Dasgupta, S. Ahlawat, and P. K. Gupta, “Trapping of micron-sized objects at a liquid–air interface,” J. Opt. A: Pure Appl. Opt. 9, S189–S195 (2007).
[CrossRef]

Delville, J. P.

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Phys. Rev. E 75, 046302 (2007).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[CrossRef] [PubMed]

Fabrizio, E. D.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[CrossRef]

Gallaire, F.

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Phys. Rev. E 75, 046302 (2007).
[CrossRef]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Gupta, P. K.

R. Dasgupta, S. Ahlawat, and P. K. Gupta, “Trapping of micron-sized objects at a liquid–air interface,” J. Opt. A: Pure Appl. Opt. 9, S189–S195 (2007).
[CrossRef]

Hafez, M.

E. Vela, M. Hafez, and S. Régnier, “Laser-induced thermocapillary convection for mesoscale manipulation,” Int. J. Optomechatron. 3, 289–302 (2009).
[CrossRef]

Higuera, F. J.

F. J. Higuera, “Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above,” Phys. Fluids 12, 2186–2197 (2000).
[CrossRef]

Hirai, A.

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Joseph, D. D.

P. Singh and D. D. Joseph, “Fluid dynamics of floating particles,” J. Fluid Mech. 530, 31–80 (2005).
[CrossRef]

Kim, J.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32(2005).
[CrossRef] [PubMed]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[CrossRef] [PubMed]

Kumar, R.

E. Yakhshi-Tafti, H. J. Cho, and R. Kumar, “Droplet actuation on a liquid layer due to thermocapillary motion: shape effect,” Appl. Phys. Lett. 96, 264101 (2010).
[CrossRef]

Lee, L. P.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32(2005).
[CrossRef] [PubMed]

Lei, H. X.

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19, 2711–2719 (2011).
[CrossRef] [PubMed]

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip doi: 10.1039/C1LC20272C (2011).
[PubMed]

Li, B. J.

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19, 2711–2719 (2011).
[CrossRef] [PubMed]

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip doi: 10.1039/C1LC20272C (2011).
[PubMed]

Li, X. M.

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip doi: 10.1039/C1LC20272C (2011).
[PubMed]

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19, 2711–2719 (2011).
[CrossRef] [PubMed]

Liberale, C.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[CrossRef]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[CrossRef] [PubMed]

Liu, G. L.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32(2005).
[CrossRef] [PubMed]

Liu, Y.

Lu, Y.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32(2005).
[CrossRef] [PubMed]

McGloin, D.

M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Appl. Phys. Lett. 93, 034107 (2008).
[CrossRef]

Minzioni, P.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[CrossRef]

Monjushiro, H.

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[CrossRef] [PubMed]

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Poon, A. W.

Régnier, S.

E. Vela, M. Hafez, and S. Régnier, “Laser-induced thermocapillary convection for mesoscale manipulation,” Int. J. Optomechatron. 3, 289–302 (2009).
[CrossRef]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[CrossRef] [PubMed]

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Singh, P.

P. Singh and D. D. Joseph, “Fluid dynamics of floating particles,” J. Fluid Mech. 530, 31–80 (2005).
[CrossRef]

Spekreijse, H.

T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37, 249–253 (1997).
[CrossRef] [PubMed]

van den Berg, T. J. T. P.

T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37, 249–253 (1997).
[CrossRef] [PubMed]

Vela, E.

E. Vela, M. Hafez, and S. Régnier, “Laser-induced thermocapillary convection for mesoscale manipulation,” Int. J. Optomechatron. 3, 289–302 (2009).
[CrossRef]

Vest, C. M.

C. M. Vest, “Analysis of laser-induced convection in unconfined fluids and in vertical cylinders,” Phys. Fluids 17, 1945–1950(1974)
[CrossRef]

Watarai, H.

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Wunenburger, R.

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Phys. Rev. E 75, 046302 (2007).
[CrossRef]

Xin, H. B.

Yakhshi-Tafti, E.

E. Yakhshi-Tafti, H. J. Cho, and R. Kumar, “Droplet actuation on a liquid layer due to thermocapillary motion: shape effect,” Appl. Phys. Lett. 96, 264101 (2010).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[CrossRef] [PubMed]

Zhang, Y.

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19, 2711–2719 (2011).
[CrossRef] [PubMed]

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip doi: 10.1039/C1LC20272C (2011).
[PubMed]

Appl. Phys. Lett. (2)

E. Yakhshi-Tafti, H. J. Cho, and R. Kumar, “Droplet actuation on a liquid layer due to thermocapillary motion: shape effect,” Appl. Phys. Lett. 96, 264101 (2010).
[CrossRef]

M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Appl. Phys. Lett. 93, 034107 (2008).
[CrossRef]

Biophys. J. (1)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Int. J. Optomechatron. (1)

E. Vela, M. Hafez, and S. Régnier, “Laser-induced thermocapillary convection for mesoscale manipulation,” Int. J. Optomechatron. 3, 289–302 (2009).
[CrossRef]

J. Fluid Mech. (1)

P. Singh and D. D. Joseph, “Fluid dynamics of floating particles,” J. Fluid Mech. 530, 31–80 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

R. Dasgupta, S. Ahlawat, and P. K. Gupta, “Trapping of micron-sized objects at a liquid–air interface,” J. Opt. A: Pure Appl. Opt. 9, S189–S195 (2007).
[CrossRef]

Lab Chip (1)

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip doi: 10.1039/C1LC20272C (2011).
[PubMed]

Langmuir (1)

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Nat. Mater. (1)

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32(2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[CrossRef]

Nature (3)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Fluids (2)

F. J. Higuera, “Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above,” Phys. Fluids 12, 2186–2197 (2000).
[CrossRef]

C. M. Vest, “Analysis of laser-induced convection in unconfined fluids and in vertical cylinders,” Phys. Fluids 17, 1945–1950(1974)
[CrossRef]

Phys. Rev. E (1)

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Phys. Rev. E 75, 046302 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

Vision Res. (1)

T. J. T. P. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vision Res. 37, 249–253 (1997).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MPG (3392 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup and schematic diagram of the delivery. (a) Experimental setup. The quartz container is 30 mm in diameter and 12 mm in height. The rectangular coordinate system indicates the placement of the setup. (b) Schematic diagram of the convection flows. The green arrows represent the directions of the flows. P C indicates the center position of the laser spot on the surface. (c) Schematic diagram of the working principle. D indicates the distance between the optical fiber tip and the surface of the water along the direction of the propagation. θ is the incidence angle between the beam and horizontal line. H represents the depth of the whole water layer. The inset shows the details of the working principle. V is the flow velocity. F r represents the resultant force of G and F b . G is the weight, F b is related to the surface tension and the net pressure force, α is the angle between vertical line and the direction of F b , and F d is the drag force.

Fig. 2
Fig. 2

(a) Optical microscope images of delivering and trapping an oil drop ( 206 μm in diameter) by changing P L at 28.5 40 mW at θ = 30 ° , D = 1.5 mm , P C = 25 mm , and H = 10 mm . The white arrows indicate the moving directions. (b) Resultant force F r versus position along X axis. The symbols (e.g., 1–8) correspond to the positions of the drop in Fig. 2a. (c) Drag force F r versus relative velocity u. The symbols (e.g., 1–8) correspond to the positions of the drop in Fig. 2a.

Fig. 3
Fig. 3

Flow velocity under different conditions. (a) The velocity distributions along the X axis at seven different incident positions P C (from 22 mm to 28 mm ). (b) θ dependence of the peak of velocity distribution. (c) D dependence of the peak of velocity distribution. (d) The peak of velocity distribution versus laser power P L . The red line is a linear fit to the experimental data. Error bars represent the standard deviation of the ten measurements for each data point.

Fig. 4
Fig. 4

Optical microscope images of delivering other objects at θ = 30 ° , D = 1.5 mm , and P C = 25 mm . The yellow arrows indicate the moving direction. (a) A cluster of carbon ( 455 μm in average diameter), H = 10 mm and P L = 14 mW . (b) A red blood cell ( 5 μm in diameter) deposited at the container bottom, H = 2 mm and P L = 20 mW .

Fig. 5
Fig. 5

A group of cells (about 30) suspending in the same layer of water were delivered forward at a velocity of 32.9 μm / s . P L = 20 mW , H = 2 mm , θ = 30 ° , D = 1.5 mm , and P C = 25 mm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F r = G sin α ,
F d = 6 π η [ 2 η + 3 η int 3 ( η + η int ) ] r u ,
F r = 0.2 × ( 4 3 π r o 3 ρ g sin α ) ,
F d = 0.6 × [ 6 π η r o u 2 η + 3 η int 3 ( η + η int ) ] ,

Metrics