Abstract

Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes rou tinely used in the synchrotron community.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
    [CrossRef]
  2. F. Brizuela, S. Carbajo, A. Sakdinawat, D. Alessi, D. H. Martz, Y. Wang, B. Luther, K. A. Goldberg, I. Mochi, D. T. Attwood, B. La Fontaine, J. J. Rocca, and C. S. Menoni, “Extreme ultraviolet laser-based table-top aerial image metrology of lithographic masks,” Opt. Express 18, 14467–73 (2010).
    [CrossRef] [PubMed]
  3. I. Mochi, K. A. Goldberg, P. Naulleau, and S. Huh, “Improving the performance of the actinic inspection tool with an optimized alignment procedure,” Proc. SPIE 7271, 76361A (2009).
    [CrossRef]
  4. P. Fischer and M.-Y. Im, “Imaging nanoscale magnetic structures with polarized soft x-ray photons,” IEEE Photon. J. 2, 253 (2010).
  5. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17, 17669–17677(2009).
    [CrossRef] [PubMed]
  6. D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
    [CrossRef]
  7. I. McKinnie and H. Kapteyn, “High-harmonic generation: ultrafast lasers yield x-rays,” Nat. Photon. 4, 149 (2010).
    [CrossRef]
  8. P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
    [CrossRef]
  9. N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
    [CrossRef]
  10. F. Pedaci, Y. Wang, M. Berrill, B. Luther, E. Granados, and J. J. Rocca, “Highly coherent injection-seeded 13.2 nm table-top soft x-ray laser,” Opt. Lett. 33, 491–493 (2008).
    [CrossRef] [PubMed]
  11. ZEMAX optical system design software is developed and distributed by ZEMAX Development Corporation, 3001 112th Avenue NE, Suite 202, Bellevue, Wash. 98004-8017, USA.

2010 (4)

F. Brizuela, S. Carbajo, A. Sakdinawat, D. Alessi, D. H. Martz, Y. Wang, B. Luther, K. A. Goldberg, I. Mochi, D. T. Attwood, B. La Fontaine, J. J. Rocca, and C. S. Menoni, “Extreme ultraviolet laser-based table-top aerial image metrology of lithographic masks,” Opt. Express 18, 14467–73 (2010).
[CrossRef] [PubMed]

P. Fischer and M.-Y. Im, “Imaging nanoscale magnetic structures with polarized soft x-ray photons,” IEEE Photon. J. 2, 253 (2010).

I. McKinnie and H. Kapteyn, “High-harmonic generation: ultrafast lasers yield x-rays,” Nat. Photon. 4, 149 (2010).
[CrossRef]

P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
[CrossRef]

2009 (3)

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17, 17669–17677(2009).
[CrossRef] [PubMed]

I. Mochi, K. A. Goldberg, P. Naulleau, and S. Huh, “Improving the performance of the actinic inspection tool with an optimized alignment procedure,” Proc. SPIE 7271, 76361A (2009).
[CrossRef]

2008 (2)

F. Pedaci, Y. Wang, M. Berrill, B. Luther, E. Granados, and J. J. Rocca, “Highly coherent injection-seeded 13.2 nm table-top soft x-ray laser,” Opt. Lett. 33, 491–493 (2008).
[CrossRef] [PubMed]

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

2006 (1)

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Alessi, D.

Anderson, E.

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Anderson, E. H.

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17, 17669–17677(2009).
[CrossRef] [PubMed]

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Attwood, D.

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Attwood, D. T.

Berrill, M.

Besen, M.

P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
[CrossRef]

Blackborow, P.

P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
[CrossRef]

Bowering, N.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Brandt, D.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Brizuela, F.

Bykanov, A.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Carbajo, S.

Chao, W.

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17, 17669–17677(2009).
[CrossRef] [PubMed]

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Chrobak, C.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Ershov, A.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Farrar, N.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Fischer, P.

P. Fischer and M.-Y. Im, “Imaging nanoscale magnetic structures with polarized soft x-ray photons,” IEEE Photon. J. 2, 253 (2010).

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17, 17669–17677(2009).
[CrossRef] [PubMed]

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Fomenkov, I.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Goldberg, K. A.

F. Brizuela, S. Carbajo, A. Sakdinawat, D. Alessi, D. H. Martz, Y. Wang, B. Luther, K. A. Goldberg, I. Mochi, D. T. Attwood, B. La Fontaine, J. J. Rocca, and C. S. Menoni, “Extreme ultraviolet laser-based table-top aerial image metrology of lithographic masks,” Opt. Express 18, 14467–73 (2010).
[CrossRef] [PubMed]

I. Mochi, K. A. Goldberg, P. Naulleau, and S. Huh, “Improving the performance of the actinic inspection tool with an optimized alignment procedure,” Proc. SPIE 7271, 76361A (2009).
[CrossRef]

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Granados, E.

Gunion, R. F.

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Gustafson, D.

P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
[CrossRef]

Han, H.-S.

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Harteneck, B.

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Hoffman, J.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Horne, S.

P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
[CrossRef]

Huh, S.

I. Mochi, K. A. Goldberg, P. Naulleau, and S. Huh, “Improving the performance of the actinic inspection tool with an optimized alignment procedure,” Proc. SPIE 7271, 76361A (2009).
[CrossRef]

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Im, M.-Y.

P. Fischer and M.-Y. Im, “Imaging nanoscale magnetic structures with polarized soft x-ray photons,” IEEE Photon. J. 2, 253 (2010).

Kapteyn, H.

I. McKinnie and H. Kapteyn, “High-harmonic generation: ultrafast lasers yield x-rays,” Nat. Photon. 4, 149 (2010).
[CrossRef]

Kemp, C. D.

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Khodykin, O.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Kim, J.

La Fontaine, B.

Larabell, C.

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Le Gros, M.

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Liddle, J. A.

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Luther, B.

Martz, D. H.

McKinnie, I.

I. McKinnie and H. Kapteyn, “High-harmonic generation: ultrafast lasers yield x-rays,” Nat. Photon. 4, 149 (2010).
[CrossRef]

Menoni, C. S.

Mochi, I.

F. Brizuela, S. Carbajo, A. Sakdinawat, D. Alessi, D. H. Martz, Y. Wang, B. Luther, K. A. Goldberg, I. Mochi, D. T. Attwood, B. La Fontaine, J. J. Rocca, and C. S. Menoni, “Extreme ultraviolet laser-based table-top aerial image metrology of lithographic masks,” Opt. Express 18, 14467–73 (2010).
[CrossRef] [PubMed]

I. Mochi, K. A. Goldberg, P. Naulleau, and S. Huh, “Improving the performance of the actinic inspection tool with an optimized alignment procedure,” Proc. SPIE 7271, 76361A (2009).
[CrossRef]

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Myers, D.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Naulleau, P.

I. Mochi, K. A. Goldberg, P. Naulleau, and S. Huh, “Improving the performance of the actinic inspection tool with an optimized alignment procedure,” Proc. SPIE 7271, 76361A (2009).
[CrossRef]

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Partlo, W.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Partlow, M.

P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
[CrossRef]

Pedaci, F.

Rekawa, S.

Rekawa, S. B.

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Rocca, J. J.

Sakdinawat, A.

Schneider, G.

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

Smith, D.

P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
[CrossRef]

Vaschenko, G.

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Wang, Y.

IEEE Photon. J. (1)

P. Fischer and M.-Y. Im, “Imaging nanoscale magnetic structures with polarized soft x-ray photons,” IEEE Photon. J. 2, 253 (2010).

J. Biomed. Nanotechnol. (1)

D. Attwood, W. Chao, E. Anderson, J. A. Liddle, B. Harteneck, P. Fischer, G. Schneider, M. Le Gros, and C. Larabell, “Imaging at high spatial resolution: soft x-ray microscopy to 15 nm,” J. Biomed. Nanotechnol. 2, 75 (2006).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. A. Goldberg, P. Naulleau, I. Mochi, E. H. Anderson, S. B. Rekawa, C. D. Kemp, R. F. Gunion, H.-S. Han, and S. Huh, “Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture,” J. Vac. Sci. Technol. B 26, 2220–4(2008).
[CrossRef]

Microelectron. Eng. (1)

N. Farrar, D. Brandt, I. Fomenkov, A. Ershov, N. Bowering, W. Partlo, D. Myers, A. Bykanov, G. Vaschenko, O. Khodykin, J. Hoffman, and C. Chrobak, “EUV laser produced plasma source development,” Microelectron. Eng. 86, 509–512 (2009).
[CrossRef]

Nat. Photon. (1)

I. McKinnie and H. Kapteyn, “High-harmonic generation: ultrafast lasers yield x-rays,” Nat. Photon. 4, 149 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

P. Blackborow, M. Partlow, S. Horne, M. Besen, D. Smith, and D. Gustafson, “EUV source development for AIMS and blank inspection,” Proc. SPIE 7636, 763609 (2010).
[CrossRef]

I. Mochi, K. A. Goldberg, P. Naulleau, and S. Huh, “Improving the performance of the actinic inspection tool with an optimized alignment procedure,” Proc. SPIE 7271, 76361A (2009).
[CrossRef]

Other (1)

ZEMAX optical system design software is developed and distributed by ZEMAX Development Corporation, 3001 112th Avenue NE, Suite 202, Bellevue, Wash. 98004-8017, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of typical system configuration for an EUV mask microscope. Distances and angles are not to scale. Only the chief illumination ray is shown.

Fig. 2
Fig. 2

(a)  y z plane view of zoneplate/image-plane (mask) region of the optical model showing three field points: one on axis and the other two at ± 4 μm in y at the image plane. (b) Zoomed in y z plane view of image region showing that the off-axis zoneplate suffers from a tilted image plane in the y direction. (c)  x z plane view of image region showing no evidence of field tilt along the x axis.

Fig. 3
Fig. 3

Through-focus spot diagrams for five field points. The field positions are in object space and, thus, are 680 times larger than the corresponding image (mask) plane offsets. Spot diagram dimensions are in micrometers.

Fig. 4
Fig. 4

Plot of astigmatism and coma magnitude in waves at image-plane field point (0, 4 μm ) as a function of effective NA.

Fig. 5
Fig. 5

Plot of equivalent astigmatism magnitude field radius as a function of effective NA.

Fig. 6
Fig. 6

Cross-field through-focus spot diagrams for a system with the zoneplate tilted to be perpendicular to the central field point chief ray. Spot diagram dimensions are in micrometers.

Fig. 7
Fig. 7

Cross-field through-focus spot diagrams for a system with the zoneplate tilted to be perpendicular to the central field point chief ray and explicitly designed to work in titled plane. Spot diagram dimensions are in micrometers.

Fig. 8
Fig. 8

Three different 3 μm × 30 μm image slices each taken at a different focus. Slice B is the nominal focus image and slices A and C are negative and positive 2.4 μm defocus images, respectively. The slices are oriented such that the long dimension lies in the direction of the field tilt.

Tables (5)

Tables Icon

Table 1 Modeled System Parameters

Tables Icon

Table 2 Cross-Field Aberrations for Baseline Configuration a

Tables Icon

Table 3 Zernike Aberrations at Off-Axis Image-Plane Field Point ( 0 μm , 4 μm ) for Two Different Focal Length Zoneplate Systems with the Same NA, AOI, and Object Distance a

Tables Icon

Table 4 Cross-Field Aberrations for Baseline Zoneplate Tilted into the Plane Perpendicular to the Central Field Point Chief Ray a

Tables Icon

Table 5 Cross-Field Aberrations for a Baseline Zoneplate, Tilted into the Plane Perpendicular to the Central Field Point Chief Ray and Designed to Work in the Tilted Plane a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Blur = Δ λ λ θ f ,

Metrics