Abstract

We demonstrate the creation of a three dimensional (3D) lattice of focus spots using a 3D Dammann grating structure. Such a 3D lattice of focus spots can be used for probing 3D structures or for creating 3D photonic crystal structures in optically sensitive media. Experimental results are included where the patterns are encoded onto a programmable liquid crystal display. We demonstrate the generation of five planar arrays each having 6×6 points surrounding another set of four planar arrays each having 5×5 points with a single pattern.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
    [CrossRef]
  2. M. Svalgaard, C. B. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
    [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  4. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
    [CrossRef] [PubMed]
  5. E. Bricchi, J. D. Mills, P. G. Kazansky, and B. G. Klappauf, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200–2202 (2002).
    [CrossRef]
  6. K. Yamada, W. Watanabe, Y. Li, and K. Itoh, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29, 1846–1849 (2004).
    [CrossRef] [PubMed]
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
    [CrossRef] [PubMed]
  8. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009).
    [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [CrossRef] [PubMed]
  10. K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).
  11. T. Kondo, S. Matsuo, S. Juodkazis, and J. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
    [CrossRef]
  12. Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
    [CrossRef]
  13. K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
    [CrossRef]
  14. T. M. Yan and H. K. Liu, “Holographic creation of photonic crystals,” Appl. Opt. 43, 4376–4384 (2004).
    [CrossRef] [PubMed]
  15. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 1908–1915 (2004).
    [CrossRef] [PubMed]
  16. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
    [CrossRef]
  17. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
    [CrossRef]
  18. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
    [CrossRef] [PubMed]
  19. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101(2005).
    [CrossRef]
  20. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18, 12136–12143 (2010).
    [CrossRef] [PubMed]
  21. H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
    [CrossRef]
  22. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34, 5961–5969 (1995).
    [CrossRef] [PubMed]
  23. I. Moreno, J. A. Davis, D. M. Cottrell, N. Zhang, and X.-C. Yuan, “Encoding generalized phase functions on Dammann gratings,” Opt. Lett. 35, 1536–1538 (2010).
    [CrossRef] [PubMed]
  24. I. Moreno, J. L. Martínez, and J. A. Davis, “Two-dimensional polarization rotator using a twisted-nematic liquid crystal display,” Appl. Opt. 46, 881–887 (2007).
    [CrossRef] [PubMed]
  25. J. A. Davis and D. M. Cottrell, “Random mask encoding of multiplexed phase-only and binary phase-only filters,” Opt. Lett. 19, 496–498 (1994).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009).
[PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

2008 (2)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

2007 (1)

2006 (3)

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

2005 (2)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101(2005).
[CrossRef]

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

2004 (3)

2003 (1)

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
[CrossRef]

2002 (2)

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

E. Bricchi, J. D. Mills, P. G. Kazansky, and B. G. Klappauf, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200–2202 (2002).
[CrossRef]

2001 (1)

T. Kondo, S. Matsuo, S. Juodkazis, and J. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

2000 (1)

K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).

1996 (1)

1995 (1)

1994 (2)

J. A. Davis and D. M. Cottrell, “Random mask encoding of multiplexed phase-only and binary phase-only filters,” Opt. Lett. 19, 496–498 (1994).
[CrossRef] [PubMed]

M. Svalgaard, C. B. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[CrossRef]

1977 (1)

H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Adachi, Y.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Ams, M.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Bjarklev, A.

M. Svalgaard, C. B. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[CrossRef]

Bricchi, E.

Cao, Y. Y.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009).
[PubMed]

Cottrell, D. M.

Dammann, H.

H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Davis, J. A.

Davis, K. M.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

Duan, X. M.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009).
[PubMed]

Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Freymann, G. V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Gan, G. K.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Hasegawa, S.

Hayasaki, Y.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101(2005).
[CrossRef]

Hee, C. W.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
[CrossRef]

Hirano, M.

K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).

Hirao, K.

Hosono, H.

K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).

Itoh, K.

K. Yamada, W. Watanabe, Y. Li, and K. Itoh, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29, 1846–1849 (2004).
[CrossRef] [PubMed]

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

Jiang, Y.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, and J. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

Kato, J.-I.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kawamura, K.

K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).

Kawashima, H.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Kawata, S.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009).
[PubMed]

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kazansky, P. G.

Klappauf, B. G.

Klotz, E.

H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and J. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

Kuroiwa, Y.

Li, Y.

K. Yamada, W. Watanabe, Y. Li, and K. Itoh, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29, 1846–1849 (2004).
[CrossRef] [PubMed]

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

Liang, W. L.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Liu, H. K.

Liu, L.

Marshall, G. D.

Martínez, J. L.

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, and J. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

Mills, J. D.

Misawa, J.

T. Kondo, S. Matsuo, S. Juodkazis, and J. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

Miura, K.

Moreno, I.

Narita, Y.

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101(2005).
[CrossRef]

Nishii, J.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

Ogawa, T.

K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Poulsen, C. B.

M. Svalgaard, C. B. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[CrossRef]

Poulsen, O.

M. Svalgaard, C. B. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Sakakura, M.

Sarukara, N.

K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).

Sawano, T.

Shimotsuma, Y.

Shinagawa, T.

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

Sivakumar, N. R.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Sugimoto, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101(2005).
[CrossRef]

Sun, H.-B.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Suzuki, J.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Svalgaard, M.

M. Svalgaard, C. B. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[CrossRef]

Takeshima, N.

Takeyasu, N.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009).
[PubMed]

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101(2005).
[CrossRef]

Tan, B.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
[CrossRef]

Tanaka, S.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 1908–1915 (2004).
[CrossRef] [PubMed]

Tanaka, T.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009).
[PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Venkatakrishnan, K.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
[CrossRef]

von Freymann, G.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

Watanabe, W.

K. Yamada, W. Watanabe, Y. Li, and K. Itoh, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29, 1846–1849 (2004).
[CrossRef] [PubMed]

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

Withford, M. J.

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

Yamada, K.

K. Yamada, W. Watanabe, Y. Li, and K. Itoh, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29, 1846–1849 (2004).
[CrossRef] [PubMed]

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

Yamaji, M.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Yan, T. M.

Yuan, X.-C.

Zhang, N.

Zhou, C.

Adv. Mater. (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003).
[CrossRef]

Appl. Phys. B (1)

K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).

Appl. Phys. Lett. (5)

T. Kondo, S. Matsuo, S. Juodkazis, and J. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002).
[CrossRef]

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101(2005).
[CrossRef]

Electron. Lett. (1)

M. Svalgaard, C. B. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[CrossRef]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Opt. Acta (1)

H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Small (1)

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the optical setup.

Fig. 2
Fig. 2

Representative binary Dammann gratings. (a) One- dimensional grating producing N x = 5 spots, (b) 2D grating producing N x N y = 5 × 5 spots. (c) Dammann lens producing five focal spots. (d) 3D grating producing 5 × 5 spots in each of the five focal planes.

Fig. 3
Fig. 3

(a) 3D Dammann grating for N x N y N z = 5 × 5 × 4 . (b) 3D Dammann grating for N x N y N z = 6 × 6 × 5 . (c) Experimental images formed by (a) Dammann grating in planes P n a located at distances of 26.8, 25.6, 24.4, and 23.3 cm . (d) Images formed by (b) in planes P n b located at distances of 27.3, 26.2, 25, 23.8, and 22.7 cm .

Fig. 4
Fig. 4

(a) Multiplexed mask for ( N x N y N z ) a = 5 × 5 × 4 and ( N x N y N z ) b = 6 × 6 × 5 Dammann gratings. (b) Experimental images formed by (a) in planes P n a , b located at distances of 27.3, 26.8, 26.2, 25.6, 25, 24.4, 23.8, 23.3, and 22.7 cm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y , z ) = exp ( i γ x x ) exp ( i γ y y ) exp ( i π [ x 2 + y 2 ] / f ) .
g ( x ) = BIN ( g ( x ) ) = n = c n exp [ i n γ x x ] ,
g ( x , y ) = { l = c l exp [ i l γ x x ] } { m = c m exp [ i m γ y y ] } { n = c n exp [ i n π r 2 / λ f ] } ,
G ( p , q , z ) = { l = c l δ ( p l γ x ) } { m = c m δ ( q m γ y ) } { n = c n δ ( z f n ) } ,
1 f n = 1 F + n f n D f F ,

Metrics