Abstract

We proposed a method to implement spatial phase-shift patterns with subdiffraction limited features through a holographic projection system. The input device of the system displayed phase-only diffractive optical elements that were calculated using the iterative Fourier-transform algorithm with the dummy-area method. By carefully designing the target patterns to the algorithm, the diffractive optical elements generated the Fourier-transformed images containing the phase-shift patterns in which the widths of dark lines were smaller than the diffraction limit. With these demonstrations, we have successfully shown that the near-field phase-shift lithographic technique can be realized through an inexpensive maskless lithographic system and can still achieve subdiffraction limited images.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).
    [CrossRef]
  2. M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
    [CrossRef]
  3. Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” J. Opt. Soc. Am. A11, 2438–2452 (1994).
    [CrossRef]
  4. H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2–14 (1998).
    [CrossRef]
  5. G. A. Cirino, R. D. Mansano, P. Verdonck, L. Cescato, and L. G. Neto, “Diffractive phase-shift lithography photomask operating in proximity printing mode,” Opt. Express 18, 16387–16405 (2010).
    [CrossRef] [PubMed]
  6. J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
    [CrossRef]
  7. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
    [CrossRef]
  8. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
    [CrossRef]
  9. Z.-Y. Li, Y. Yin, and Y. Xia, “Optimization of elastomeric phase masks for near-field photolithography,” Appl. Phys. Lett. 78, 2431–2433 (2001).
    [CrossRef]
  10. M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).
  11. J. Maria, S. Jeon, and J. A. Rogers, “Nanopatterning with conformable phase masks,” J. Photochem. Photobiol., A 166, 149–154 (2004).
    [CrossRef]
  12. T. Horiuchi, T. Miyakawa, and S. Hosoda, “A new projection exposure method using a liquid crystal display as a switching matrix in place of a reticle,” Jpn. J. Appl. Phys. 39, 324–329 (2000).
    [CrossRef]
  13. M. Klosner and K. Jaina, “Massively parallel, large-area maskless lithography,” Appl. Phys. Lett. 84, 2880–2882(2004).
    [CrossRef]
  14. W.-F. Hsu and Y.-H. Su, “A far-field implementation of near-field phase-shift lithography using diffractive optical elements,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMC4.
  15. W.-F. Hsu and Y.-H. Su, “Implementation of far-field phase-shift lithography using diffractive optical elements,” Proc. SPIE 6462, 64621C (2007).
    [CrossRef]
  16. W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Generation of phase-shift patterns in the optical far field and its applications,” Proc. SPIE 6832, 68320J (2007).
    [CrossRef]
  17. C. Bay, N. Hubner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Opt. Lett. 35, 2230–2232 (2010).
    [CrossRef] [PubMed]
  18. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).
  19. C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005).
    [CrossRef]
  20. M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
    [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company Publishers, CO, 2005), Chaps. 2 and 5.
  22. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990).
    [CrossRef]
  23. H. Akahori, “Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform,” Appl. Opt. 25, 802–811 (1986).
    [CrossRef] [PubMed]

2010 (2)

2008 (1)

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

2007 (2)

W.-F. Hsu and Y.-H. Su, “Implementation of far-field phase-shift lithography using diffractive optical elements,” Proc. SPIE 6462, 64621C (2007).
[CrossRef]

W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Generation of phase-shift patterns in the optical far field and its applications,” Proc. SPIE 6832, 68320J (2007).
[CrossRef]

2006 (1)

W.-F. Hsu and Y.-H. Su, “A far-field implementation of near-field phase-shift lithography using diffractive optical elements,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMC4.

2005 (2)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company Publishers, CO, 2005), Chaps. 2 and 5.

C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005).
[CrossRef]

2004 (2)

M. Klosner and K. Jaina, “Massively parallel, large-area maskless lithography,” Appl. Phys. Lett. 84, 2880–2882(2004).
[CrossRef]

J. Maria, S. Jeon, and J. A. Rogers, “Nanopatterning with conformable phase masks,” J. Photochem. Photobiol., A 166, 149–154 (2004).
[CrossRef]

2003 (1)

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

2001 (1)

Z.-Y. Li, Y. Yin, and Y. Xia, “Optimization of elastomeric phase masks for near-field photolithography,” Appl. Phys. Lett. 78, 2431–2433 (2001).
[CrossRef]

2000 (1)

T. Horiuchi, T. Miyakawa, and S. Hosoda, “A new projection exposure method using a liquid crystal display as a switching matrix in place of a reticle,” Jpn. J. Appl. Phys. 39, 324–329 (2000).
[CrossRef]

1998 (2)

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2–14 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

1997 (2)

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

1994 (2)

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” J. Opt. Soc. Am. A11, 2438–2452 (1994).
[CrossRef]

1990 (1)

1986 (1)

1982 (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).
[CrossRef]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).

Aizenberg, J.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

Akahori, H.

Astolfi, D. K.

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Bay, C.

Cann, S. G.

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Cescato, L.

Chen, Y.-W.

W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Generation of phase-shift patterns in the optical far field and its applications,” Proc. SPIE 6832, 68320J (2007).
[CrossRef]

Cirino, G. A.

Coppola, G.

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

Ferraro, P.

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

Forte, A. R.

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Freeman, J.

Fritze, M.

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).

Gioffré, M.

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company Publishers, CO, 2005), Chaps. 2 and 5.

Grilli, S.

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

Horiuchi, T.

T. Horiuchi, T. Miyakawa, and S. Hosoda, “A new projection exposure method using a liquid crystal display as a switching matrix in place of a reticle,” Jpn. J. Appl. Phys. 39, 324–329 (2000).
[CrossRef]

Hosoda, S.

T. Horiuchi, T. Miyakawa, and S. Hosoda, “A new projection exposure method using a liquid crystal display as a switching matrix in place of a reticle,” Jpn. J. Appl. Phys. 39, 324–329 (2000).
[CrossRef]

Hsu, W.-F.

W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Generation of phase-shift patterns in the optical far field and its applications,” Proc. SPIE 6832, 68320J (2007).
[CrossRef]

W.-F. Hsu and Y.-H. Su, “Implementation of far-field phase-shift lithography using diffractive optical elements,” Proc. SPIE 6462, 64621C (2007).
[CrossRef]

W.-F. Hsu and Y.-H. Su, “A far-field implementation of near-field phase-shift lithography using diffractive optical elements,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMC4.

Hu, X. K.

C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005).
[CrossRef]

Hubner, N.

Iodice, M.

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

Jackman, R. J.

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Jaina, K.

M. Klosner and K. Jaina, “Massively parallel, large-area maskless lithography,” Appl. Phys. Lett. 84, 2880–2882(2004).
[CrossRef]

Jeon, S.

J. Maria, S. Jeon, and J. A. Rogers, “Nanopatterning with conformable phase masks,” J. Photochem. Photobiol., A 166, 149–154 (2004).
[CrossRef]

Kailath, T.

Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” J. Opt. Soc. Am. A11, 2438–2452 (1994).
[CrossRef]

Karklin, L.

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2–14 (1998).
[CrossRef]

Klosner, M.

M. Klosner and K. Jaina, “Massively parallel, large-area maskless lithography,” Appl. Phys. Lett. 84, 2880–2882(2004).
[CrossRef]

Lambert, R. D.

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Levenson, M. D.

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).
[CrossRef]

Li, Z.-Y.

Z.-Y. Li, Y. Yin, and Y. Xia, “Optimization of elastomeric phase masks for near-field photolithography,” Appl. Phys. Lett. 78, 2431–2433 (2001).
[CrossRef]

Lipson, R. H.

C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005).
[CrossRef]

Liu, H.-Y.

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2–14 (1998).
[CrossRef]

Lu, C.

C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005).
[CrossRef]

Mailis, S.

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

Mansano, R. D.

Maria, J.

J. Maria, S. Jeon, and J. A. Rogers, “Nanopatterning with conformable phase masks,” J. Photochem. Photobiol., A 166, 149–154 (2004).
[CrossRef]

Mitchell, I. V.

C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005).
[CrossRef]

Miyakawa, T.

T. Horiuchi, T. Miyakawa, and S. Hosoda, “A new projection exposure method using a liquid crystal display as a switching matrix in place of a reticle,” Jpn. J. Appl. Phys. 39, 324–329 (2000).
[CrossRef]

Neto, L. G.

Pati, Y. C.

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2–14 (1998).
[CrossRef]

Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” J. Opt. Soc. Am. A11, 2438–2452 (1994).
[CrossRef]

Paturzo, M.

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

Paul, K. E.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Rogers, J. A.

J. Maria, S. Jeon, and J. A. Rogers, “Nanopatterning with conformable phase masks,” J. Photochem. Photobiol., A 166, 149–154 (2004).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).
[CrossRef]

Su, Y.-H.

W.-F. Hsu and Y.-H. Su, “Implementation of far-field phase-shift lithography using diffractive optical elements,” Proc. SPIE 6462, 64621C (2007).
[CrossRef]

W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Generation of phase-shift patterns in the optical far field and its applications,” Proc. SPIE 6832, 68320J (2007).
[CrossRef]

W.-F. Hsu and Y.-H. Su, “A far-field implementation of near-field phase-shift lithography using diffractive optical elements,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMC4.

Tyrrell, B. M.

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Verdonck, P.

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).
[CrossRef]

Wang, Y.-T.

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2–14 (1998).
[CrossRef]

Wheeler, B. D.

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Whitesides, G. M.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Wilkinson, T.

Wyrowski, F.

Xia, Y.

Z.-Y. Li, Y. Yin, and Y. Xia, “Optimization of elastomeric phase masks for near-field photolithography,” Appl. Phys. Lett. 78, 2431–2433 (2001).
[CrossRef]

Yin, Y.

Z.-Y. Li, Y. Yin, and Y. Xia, “Optimization of elastomeric phase masks for near-field photolithography,” Appl. Phys. Lett. 78, 2431–2433 (2001).
[CrossRef]

Yost, D.-R. W.

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Appl. Opt. (2)

Appl. Phys. Lett. (5)

Z.-Y. Li, Y. Yin, and Y. Xia, “Optimization of elastomeric phase masks for near-field photolithography,” Appl. Phys. Lett. 78, 2431–2433 (2001).
[CrossRef]

M. Klosner and K. Jaina, “Massively parallel, large-area maskless lithography,” Appl. Phys. Lett. 84, 2880–2882(2004).
[CrossRef]

C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

IEEE Trans. Electron Devices (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” J. Opt. Soc. Am. A11, 2438–2452 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol., A (1)

J. Maria, S. Jeon, and J. A. Rogers, “Nanopatterning with conformable phase masks,” J. Photochem. Photobiol., A 166, 149–154 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Horiuchi, T. Miyakawa, and S. Hosoda, “A new projection exposure method using a liquid crystal display as a switching matrix in place of a reticle,” Jpn. J. Appl. Phys. 39, 324–329 (2000).
[CrossRef]

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994).
[CrossRef]

Lincoln Lab. J. (1)

M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).

Opt. Commun. (1)

M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optik (Jena) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).

Proc. SPIE (3)

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2–14 (1998).
[CrossRef]

W.-F. Hsu and Y.-H. Su, “Implementation of far-field phase-shift lithography using diffractive optical elements,” Proc. SPIE 6462, 64621C (2007).
[CrossRef]

W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Generation of phase-shift patterns in the optical far field and its applications,” Proc. SPIE 6832, 68320J (2007).
[CrossRef]

Other (2)

W.-F. Hsu and Y.-H. Su, “A far-field implementation of near-field phase-shift lithography using diffractive optical elements,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMC4.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company Publishers, CO, 2005), Chaps. 2 and 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Phase profiles of the phase-shift patterns (PSPs) of (a) a single dark line [Eq. (1)], (b) three dark lines [Eq. (4)], and (c) crossed dark lines [Eq. (5)].

Fig. 2
Fig. 2

Target pattern of the single-line PSP as an initial condition to the iterative Fourier-transform algorithm (IFTA) with the dummy-area method. The dark line between the regions of 0 and π radians appears only in the intensity distribution of this pattern.

Fig. 3
Fig. 3

Simulated intensity and phase distributions of the single-line PSP that was generated by a phase-only DOE designed by the modified IFTA. (a) Simulated intensity, (b) simulated phase, (c) interpolated intensity of the PSP window, and (d) the interpolated phase of the PSP window.

Fig. 4
Fig. 4

(a) Interpolated intensity and (b) interpolated phase of the PSP window with three dark lines generated by a phase-only DOE designed by the modified IFTA.

Fig. 5
Fig. 5

(a) Interpolated intensity and (b) interpolated phase of the PSP window with crossed dark lines generated by a phase-only DOE designed by the modified IFTA.

Fig. 6
Fig. 6

System apparatus of the holographic projection display for generation of the phase-shift patterns.

Fig. 7
Fig. 7

(a) Intensity of the PSP window of a single dark line with a full-frame illumination to the input SLM. (b) Intensity of the PSP window with a small-beam illumination.

Fig. 8
Fig. 8

Intensities of the PSP windows of (a) three dark lines and (b) crossed lines.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f PSP ( x , y ) = sgn ( x ) · rect ( x 2 W , y 2 W ) ,
sgn ( x ) = { 1 = e j 0 x > 0 0 x = 0 1 = e j π x < 0 .
I PSP ( x , y ) = | f PSP ( x , y ) | 2 = { 0 x = 0 1 otherwise ,     in a     ( 2 W , 2 W )   square .
f PSP ( x , y ) = [ sgn ( x D ) sgn ( x ) sgn ( x + D ) ] · rect ( x 2 W , y 2 W ) for     D < W ,
f PSP ( x , y ) = [ sgn ( x ) sgn ( y ) ] · rect ( x 2 W , y 2 W ) ,
f FT ( x , y ) = FT { f DOE ( ξ , η ) } ,
U f ( x , y ) = e j k f j λ f FT { U DOE ( ξ , η ) } | f x = x λ f , f y = y λ f ,

Metrics