Abstract

After reviewing the spectrum-dividing principle of the Savart polariscope (SP) in the polarization interference imaging spectrometer (PIIS) that we developed, we analyze the influences of the thickness, misalignment, and dispersion of the SP on the optical path difference (OPD). The theoretical expression of the OPD for the misalignment of the SP optical axis is deduced, and the OPD is analyzed when the incident plane is parallel, at 45°, or orthogonal to the principal section of the left plate of the SP. The selective thickness of the single Savart plate is analyzed when it is placed at the ideal and misalignment positions. The influence of dispersion of the SP on the OPD is analyzed when the misalignment error is ±1. The relationships between the OPD and wavelength are simulated and validated with experiments. This work can provide theoretical and practical guidance for the design, calibration, modulation, innovation, experiment, and engineering of the PIIS.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).
  2. R. G. Sellar and J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
    [CrossRef] [PubMed]
  3. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
    [CrossRef]
  4. T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699–1705 (2009).
    [CrossRef]
  5. C. Zhang, B. Xiangli, and B. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” Proc. SPIE 4087, 957–961 (2000).
    [CrossRef]
  6. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
    [CrossRef]
  7. C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221–225 (2003).
    [CrossRef]
  8. C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815–817 (2004).
    [CrossRef]
  9. C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
    [CrossRef] [PubMed]
  10. C. Zhang, B. Zhao, Y. Yuan, and J. He, “Analysis of the throughput of onboard polarization interference imaging spectrometer,” Proc. SPIE 6032, 60320H(2006).
    [CrossRef]
  11. L. Wu, C. Zhang, and B. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273, 67–73 (2007).
    [CrossRef]
  12. J. Wu, C. Zhang, Y. Zhang, H. Liu, and X. Zhai, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17, 2504–2508 (2008).
    [CrossRef]
  13. C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056(2008).
    [CrossRef]
  14. T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984–1992 (2009).
    [CrossRef]
  15. T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. 48, 2333–2339(2009).
    [CrossRef] [PubMed]
  16. W. Ren, C. Zhang, and T. Mu, “Application of equivalent air gap method in uniaxial crystal plate,” Chin. Phys. Lett. 26, 074208 (2009).
    [CrossRef]
  17. C. Zhang, B. Zhao, Z. Yuan, and W. Huang, “Analysis of signal-to-noise ratio of an ultra-compact static polarization interference imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 11, 085401 (2009).
    [CrossRef]
  18. X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010).
    [CrossRef] [PubMed]
  19. H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283, 4129–4134 (2010).
    [CrossRef]
  20. J. Wu and C. Zhang, “The relationship between the angle of incidence and dispersion in the static large field of view polarization interference imaging spectrometer,” Chin. Phys. B 19, 034201 (2010).
    [CrossRef]
  21. C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. 35, 366–368 (2010).
    [CrossRef] [PubMed]
  22. C. Zhang, T. Mu, W. Ren, L. Zhang, and N. Liu, “Design and analysis of a wide field of view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010).
    [CrossRef]
  23. C. Zhang, W. Ren, and T. Mu, “Effects of optical axis direction on optical path difference and lateral displacement of Savart polariscope,” Chin. Phys. B 19, 024202(2010).
    [CrossRef]
  24. J. He and C. Zhang, “The accurate calculation of the Fourier transform of the pure Voigt function,” J. Opt. A: Pure Appl. Opt. 7, 613–616 (2005).
    [CrossRef]
  25. X. Su, W. Tian, and C. Zhang, “Analysis of the effect on tissue autofluorescence detection from off-focus of linear-array pinholes in LP-laser scanning confocal fluorescence microscopical imaging spectrometer,” Proc. SPIE 6026, 60260S(2006).
    [CrossRef]
  26. C. Zhang and J. He, “The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile,” Opt. Express 14, 12561–12567 (2006).
    [CrossRef] [PubMed]
  27. C. Zhang, B. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
    [CrossRef]
  28. C. Zhang, B. Zhao, Y. Li, and J. Ye, “Novel imaging interferometer for upper high speed atmospheric wind field survey,” Proc. SPIE 6279, 62791D (2007).
    [CrossRef]
  29. Z. Bu, C. Zhang, and B. Zhao, “A static and divided mirror Michelson interferometer for measuring atmospheric winds,” Proc. SPIE 7156, 71563D (2009).
    [CrossRef]
  30. T. Mu and C. Zhang, “A novel polarization interferometer for measuring upper atmospheric winds,” Chin. Phys. B 19, 060702 (2010).
    [CrossRef]
  31. X. Jian, C. Zhang, B. Zhu, B. Zhao, and J. Du, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 57, 7565–7570 (2008) (in Chinese).
  32. X. Jian, C. Zhang, B. Zhao, L. Zhang, and L. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).
  33. M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15–29.
  34. M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), pp. 33.61–33.70.
  35. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

2010 (7)

C. Zhang, T. Mu, W. Ren, L. Zhang, and N. Liu, “Design and analysis of a wide field of view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010).
[CrossRef]

C. Zhang, W. Ren, and T. Mu, “Effects of optical axis direction on optical path difference and lateral displacement of Savart polariscope,” Chin. Phys. B 19, 024202(2010).
[CrossRef]

T. Mu and C. Zhang, “A novel polarization interferometer for measuring upper atmospheric winds,” Chin. Phys. B 19, 060702 (2010).
[CrossRef]

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283, 4129–4134 (2010).
[CrossRef]

J. Wu and C. Zhang, “The relationship between the angle of incidence and dispersion in the static large field of view polarization interference imaging spectrometer,” Chin. Phys. B 19, 034201 (2010).
[CrossRef]

C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. 35, 366–368 (2010).
[CrossRef] [PubMed]

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010).
[CrossRef] [PubMed]

2009 (7)

X. Jian, C. Zhang, B. Zhao, L. Zhang, and L. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).

Z. Bu, C. Zhang, and B. Zhao, “A static and divided mirror Michelson interferometer for measuring atmospheric winds,” Proc. SPIE 7156, 71563D (2009).
[CrossRef]

W. Ren, C. Zhang, and T. Mu, “Application of equivalent air gap method in uniaxial crystal plate,” Chin. Phys. Lett. 26, 074208 (2009).
[CrossRef]

C. Zhang, B. Zhao, Z. Yuan, and W. Huang, “Analysis of signal-to-noise ratio of an ultra-compact static polarization interference imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 11, 085401 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984–1992 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699–1705 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. 48, 2333–2339(2009).
[CrossRef] [PubMed]

2008 (3)

J. Wu, C. Zhang, Y. Zhang, H. Liu, and X. Zhai, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17, 2504–2508 (2008).
[CrossRef]

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056(2008).
[CrossRef]

X. Jian, C. Zhang, B. Zhu, B. Zhao, and J. Du, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 57, 7565–7570 (2008) (in Chinese).

2007 (2)

C. Zhang, B. Zhao, Y. Li, and J. Ye, “Novel imaging interferometer for upper high speed atmospheric wind field survey,” Proc. SPIE 6279, 62791D (2007).
[CrossRef]

L. Wu, C. Zhang, and B. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273, 67–73 (2007).
[CrossRef]

2006 (4)

C. Zhang, B. Zhao, Y. Yuan, and J. He, “Analysis of the throughput of onboard polarization interference imaging spectrometer,” Proc. SPIE 6032, 60320H(2006).
[CrossRef]

X. Su, W. Tian, and C. Zhang, “Analysis of the effect on tissue autofluorescence detection from off-focus of linear-array pinholes in LP-laser scanning confocal fluorescence microscopical imaging spectrometer,” Proc. SPIE 6026, 60260S(2006).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

C. Zhang and J. He, “The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile,” Opt. Express 14, 12561–12567 (2006).
[CrossRef] [PubMed]

2005 (2)

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
[CrossRef]

J. He and C. Zhang, “The accurate calculation of the Fourier transform of the pure Voigt function,” J. Opt. A: Pure Appl. Opt. 7, 613–616 (2005).
[CrossRef]

2004 (2)

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815–817 (2004).
[CrossRef]

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[CrossRef] [PubMed]

2003 (2)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

2002 (1)

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

2000 (1)

C. Zhang, B. Xiangli, and B. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” Proc. SPIE 4087, 957–961 (2000).
[CrossRef]

1995 (2)

M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), pp. 33.61–33.70.

R. G. Sellar and J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
[CrossRef] [PubMed]

1972 (1)

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).

1971 (1)

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15–29.

Bai, X.

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283, 4129–4134 (2010).
[CrossRef]

Bass, M.

M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), pp. 33.61–33.70.

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
[CrossRef]

Bu, Z.

Z. Bu, C. Zhang, and B. Zhao, “A static and divided mirror Michelson interferometer for measuring atmospheric winds,” Proc. SPIE 7156, 71563D (2009).
[CrossRef]

Du, J.

X. Jian, C. Zhang, B. Zhu, B. Zhao, and J. Du, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 57, 7565–7570 (2008) (in Chinese).

Françon, M.

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15–29.

He, J.

C. Zhang and J. He, “The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile,” Opt. Express 14, 12561–12567 (2006).
[CrossRef] [PubMed]

C. Zhang, B. Zhao, Y. Yuan, and J. He, “Analysis of the throughput of onboard polarization interference imaging spectrometer,” Proc. SPIE 6032, 60320H(2006).
[CrossRef]

J. He and C. Zhang, “The accurate calculation of the Fourier transform of the pure Voigt function,” J. Opt. A: Pure Appl. Opt. 7, 613–616 (2005).
[CrossRef]

Huang, W.

C. Zhang, B. Zhao, Z. Yuan, and W. Huang, “Analysis of signal-to-noise ratio of an ultra-compact static polarization interference imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 11, 085401 (2009).
[CrossRef]

Jian, X.

C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. 35, 366–368 (2010).
[CrossRef] [PubMed]

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010).
[CrossRef] [PubMed]

X. Jian, C. Zhang, B. Zhao, L. Zhang, and L. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).

X. Jian, C. Zhang, B. Zhu, B. Zhao, and J. Du, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 57, 7565–7570 (2008) (in Chinese).

Li, Y.

C. Zhang, B. Zhao, Y. Li, and J. Ye, “Novel imaging interferometer for upper high speed atmospheric wind field survey,” Proc. SPIE 6279, 62791D (2007).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

Liu, H.

J. Wu, C. Zhang, Y. Zhang, H. Liu, and X. Zhai, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17, 2504–2508 (2008).
[CrossRef]

Liu, N.

C. Zhang, T. Mu, W. Ren, L. Zhang, and N. Liu, “Design and analysis of a wide field of view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010).
[CrossRef]

Mallick, S.

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15–29.

Mu, T.

C. Zhang, T. Mu, W. Ren, L. Zhang, and N. Liu, “Design and analysis of a wide field of view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010).
[CrossRef]

C. Zhang, W. Ren, and T. Mu, “Effects of optical axis direction on optical path difference and lateral displacement of Savart polariscope,” Chin. Phys. B 19, 024202(2010).
[CrossRef]

T. Mu and C. Zhang, “A novel polarization interferometer for measuring upper atmospheric winds,” Chin. Phys. B 19, 060702 (2010).
[CrossRef]

W. Ren, C. Zhang, and T. Mu, “Application of equivalent air gap method in uniaxial crystal plate,” Chin. Phys. Lett. 26, 074208 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984–1992 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699–1705 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. 48, 2333–2339(2009).
[CrossRef] [PubMed]

Rafert, J. B.

Ren, W.

C. Zhang, T. Mu, W. Ren, L. Zhang, and N. Liu, “Design and analysis of a wide field of view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010).
[CrossRef]

C. Zhang, W. Ren, and T. Mu, “Effects of optical axis direction on optical path difference and lateral displacement of Savart polariscope,” Chin. Phys. B 19, 024202(2010).
[CrossRef]

W. Ren, C. Zhang, and T. Mu, “Application of equivalent air gap method in uniaxial crystal plate,” Chin. Phys. Lett. 26, 074208 (2009).
[CrossRef]

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
[CrossRef]

R. G. Sellar and J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
[CrossRef] [PubMed]

Stryland, E. W. V.

M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), pp. 33.61–33.70.

Su, X.

X. Su, W. Tian, and C. Zhang, “Analysis of the effect on tissue autofluorescence detection from off-focus of linear-array pinholes in LP-laser scanning confocal fluorescence microscopical imaging spectrometer,” Proc. SPIE 6026, 60260S(2006).
[CrossRef]

Tian, W.

X. Su, W. Tian, and C. Zhang, “Analysis of the effect on tissue autofluorescence detection from off-focus of linear-array pinholes in LP-laser scanning confocal fluorescence microscopical imaging spectrometer,” Proc. SPIE 6026, 60260S(2006).
[CrossRef]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Williams, D. R.

M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), pp. 33.61–33.70.

Wolfe, W. L.

M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), pp. 33.61–33.70.

Wu, H.

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283, 4129–4134 (2010).
[CrossRef]

Wu, J.

J. Wu and C. Zhang, “The relationship between the angle of incidence and dispersion in the static large field of view polarization interference imaging spectrometer,” Chin. Phys. B 19, 034201 (2010).
[CrossRef]

J. Wu, C. Zhang, Y. Zhang, H. Liu, and X. Zhai, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17, 2504–2508 (2008).
[CrossRef]

Wu, L.

L. Wu, C. Zhang, and B. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273, 67–73 (2007).
[CrossRef]

Xiangli, B.

C. Zhang, B. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815–817 (2004).
[CrossRef]

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[CrossRef] [PubMed]

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” Proc. SPIE 4087, 957–961 (2000).
[CrossRef]

Yan, X.

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056(2008).
[CrossRef]

Ye, J.

C. Zhang, B. Zhao, Y. Li, and J. Ye, “Novel imaging interferometer for upper high speed atmospheric wind field survey,” Proc. SPIE 6279, 62791D (2007).
[CrossRef]

Yuan, X.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

Yuan, Y.

C. Zhang, B. Zhao, Y. Yuan, and J. He, “Analysis of the throughput of onboard polarization interference imaging spectrometer,” Proc. SPIE 6032, 60320H(2006).
[CrossRef]

Yuan, Z.

C. Zhang, B. Zhao, Z. Yuan, and W. Huang, “Analysis of signal-to-noise ratio of an ultra-compact static polarization interference imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 11, 085401 (2009).
[CrossRef]

Zha, X.

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

Zhai, X.

J. Wu, C. Zhang, Y. Zhang, H. Liu, and X. Zhai, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17, 2504–2508 (2008).
[CrossRef]

Zhang, C.

C. Zhang, W. Ren, and T. Mu, “Effects of optical axis direction on optical path difference and lateral displacement of Savart polariscope,” Chin. Phys. B 19, 024202(2010).
[CrossRef]

C. Zhang, T. Mu, W. Ren, L. Zhang, and N. Liu, “Design and analysis of a wide field of view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010).
[CrossRef]

T. Mu and C. Zhang, “A novel polarization interferometer for measuring upper atmospheric winds,” Chin. Phys. B 19, 060702 (2010).
[CrossRef]

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010).
[CrossRef] [PubMed]

C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. 35, 366–368 (2010).
[CrossRef] [PubMed]

J. Wu and C. Zhang, “The relationship between the angle of incidence and dispersion in the static large field of view polarization interference imaging spectrometer,” Chin. Phys. B 19, 034201 (2010).
[CrossRef]

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283, 4129–4134 (2010).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. 48, 2333–2339(2009).
[CrossRef] [PubMed]

Z. Bu, C. Zhang, and B. Zhao, “A static and divided mirror Michelson interferometer for measuring atmospheric winds,” Proc. SPIE 7156, 71563D (2009).
[CrossRef]

X. Jian, C. Zhang, B. Zhao, L. Zhang, and L. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).

W. Ren, C. Zhang, and T. Mu, “Application of equivalent air gap method in uniaxial crystal plate,” Chin. Phys. Lett. 26, 074208 (2009).
[CrossRef]

C. Zhang, B. Zhao, Z. Yuan, and W. Huang, “Analysis of signal-to-noise ratio of an ultra-compact static polarization interference imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 11, 085401 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984–1992 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699–1705 (2009).
[CrossRef]

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056(2008).
[CrossRef]

J. Wu, C. Zhang, Y. Zhang, H. Liu, and X. Zhai, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17, 2504–2508 (2008).
[CrossRef]

X. Jian, C. Zhang, B. Zhu, B. Zhao, and J. Du, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 57, 7565–7570 (2008) (in Chinese).

L. Wu, C. Zhang, and B. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273, 67–73 (2007).
[CrossRef]

C. Zhang, B. Zhao, Y. Li, and J. Ye, “Novel imaging interferometer for upper high speed atmospheric wind field survey,” Proc. SPIE 6279, 62791D (2007).
[CrossRef]

X. Su, W. Tian, and C. Zhang, “Analysis of the effect on tissue autofluorescence detection from off-focus of linear-array pinholes in LP-laser scanning confocal fluorescence microscopical imaging spectrometer,” Proc. SPIE 6026, 60260S(2006).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

C. Zhang, B. Zhao, Y. Yuan, and J. He, “Analysis of the throughput of onboard polarization interference imaging spectrometer,” Proc. SPIE 6032, 60320H(2006).
[CrossRef]

C. Zhang and J. He, “The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile,” Opt. Express 14, 12561–12567 (2006).
[CrossRef] [PubMed]

J. He and C. Zhang, “The accurate calculation of the Fourier transform of the pure Voigt function,” J. Opt. A: Pure Appl. Opt. 7, 613–616 (2005).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815–817 (2004).
[CrossRef]

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[CrossRef] [PubMed]

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” Proc. SPIE 4087, 957–961 (2000).
[CrossRef]

Zhang, L.

C. Zhang, T. Mu, W. Ren, L. Zhang, and N. Liu, “Design and analysis of a wide field of view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010).
[CrossRef]

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010).
[CrossRef] [PubMed]

X. Jian, C. Zhang, B. Zhao, L. Zhang, and L. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).

Zhang, Y.

J. Wu, C. Zhang, Y. Zhang, H. Liu, and X. Zhai, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17, 2504–2508 (2008).
[CrossRef]

Zhao, B.

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010).
[CrossRef] [PubMed]

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. 48, 2333–2339(2009).
[CrossRef] [PubMed]

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984–1992 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699–1705 (2009).
[CrossRef]

C. Zhang, B. Zhao, Z. Yuan, and W. Huang, “Analysis of signal-to-noise ratio of an ultra-compact static polarization interference imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 11, 085401 (2009).
[CrossRef]

X. Jian, C. Zhang, B. Zhao, L. Zhang, and L. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).

Z. Bu, C. Zhang, and B. Zhao, “A static and divided mirror Michelson interferometer for measuring atmospheric winds,” Proc. SPIE 7156, 71563D (2009).
[CrossRef]

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056(2008).
[CrossRef]

X. Jian, C. Zhang, B. Zhu, B. Zhao, and J. Du, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 57, 7565–7570 (2008) (in Chinese).

L. Wu, C. Zhang, and B. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273, 67–73 (2007).
[CrossRef]

C. Zhang, B. Zhao, Y. Li, and J. Ye, “Novel imaging interferometer for upper high speed atmospheric wind field survey,” Proc. SPIE 6279, 62791D (2007).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

C. Zhang, B. Zhao, Y. Yuan, and J. He, “Analysis of the throughput of onboard polarization interference imaging spectrometer,” Proc. SPIE 6032, 60320H(2006).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815–817 (2004).
[CrossRef]

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[CrossRef] [PubMed]

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” Proc. SPIE 4087, 957–961 (2000).
[CrossRef]

Zhu, B.

X. Jian, C. Zhang, B. Zhu, B. Zhao, and J. Du, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 57, 7565–7570 (2008) (in Chinese).

Zhu, L.

X. Jian, C. Zhang, B. Zhao, L. Zhang, and L. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).

Acta Phys. Sin. (2)

X. Jian, C. Zhang, B. Zhu, B. Zhao, and J. Du, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 57, 7565–7570 (2008) (in Chinese).

X. Jian, C. Zhang, B. Zhao, L. Zhang, and L. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).

Appl. Opt. (3)

Chin. Phys. B (4)

J. Wu and C. Zhang, “The relationship between the angle of incidence and dispersion in the static large field of view polarization interference imaging spectrometer,” Chin. Phys. B 19, 034201 (2010).
[CrossRef]

T. Mu and C. Zhang, “A novel polarization interferometer for measuring upper atmospheric winds,” Chin. Phys. B 19, 060702 (2010).
[CrossRef]

J. Wu, C. Zhang, Y. Zhang, H. Liu, and X. Zhai, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17, 2504–2508 (2008).
[CrossRef]

C. Zhang, W. Ren, and T. Mu, “Effects of optical axis direction on optical path difference and lateral displacement of Savart polariscope,” Chin. Phys. B 19, 024202(2010).
[CrossRef]

Chin. Phys. Lett. (1)

W. Ren, C. Zhang, and T. Mu, “Application of equivalent air gap method in uniaxial crystal plate,” Chin. Phys. Lett. 26, 074208 (2009).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (3)

C. Zhang, B. Zhao, Z. Yuan, and W. Huang, “Analysis of signal-to-noise ratio of an ultra-compact static polarization interference imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 11, 085401 (2009).
[CrossRef]

J. He and C. Zhang, “The accurate calculation of the Fourier transform of the pure Voigt function,” J. Opt. A: Pure Appl. Opt. 7, 613–616 (2005).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815–817 (2004).
[CrossRef]

Opt. Commun. (7)

L. Wu, C. Zhang, and B. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273, 67–73 (2007).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699–1705 (2009).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056(2008).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984–1992 (2009).
[CrossRef]

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283, 4129–4134 (2010).
[CrossRef]

Opt. Eng. (2)

C. Zhang, T. Mu, W. Ren, L. Zhang, and N. Liu, “Design and analysis of a wide field of view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010).
[CrossRef]

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Optik (1)

C. Zhang, B. Zhao, B. Xiangli, and Y. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

Proc. SPIE (5)

C. Zhang, B. Zhao, Y. Li, and J. Ye, “Novel imaging interferometer for upper high speed atmospheric wind field survey,” Proc. SPIE 6279, 62791D (2007).
[CrossRef]

Z. Bu, C. Zhang, and B. Zhao, “A static and divided mirror Michelson interferometer for measuring atmospheric winds,” Proc. SPIE 7156, 71563D (2009).
[CrossRef]

C. Zhang, B. Zhao, Y. Yuan, and J. He, “Analysis of the throughput of onboard polarization interference imaging spectrometer,” Proc. SPIE 6032, 60320H(2006).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” Proc. SPIE 4087, 957–961 (2000).
[CrossRef]

X. Su, W. Tian, and C. Zhang, “Analysis of the effect on tissue autofluorescence detection from off-focus of linear-array pinholes in LP-laser scanning confocal fluorescence microscopical imaging spectrometer,” Proc. SPIE 6026, 60260S(2006).
[CrossRef]

Other (4)

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15–29.

M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), pp. 33.61–33.70.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical layout of the PIIS based on the SP.

Fig. 2
Fig. 2

Savart polariscope.

Fig. 3
Fig. 3

The CCD is rotated 45 ° in the x y plane.

Fig. 4
Fig. 4

Savart polariscope with misalignment optic axis.

Fig. 5
Fig. 5

OPDs at points A, B, and C are the functions of the wavelength.

Fig. 6
Fig. 6

Experimental setup for the measurement of the maximum OPD of the PIIS.

Fig. 7
Fig. 7

Reconstructed line shapes of 543.5 and 632.8 nm , respectively.

Tables (3)

Tables Icon

Table 1 Optical Path Differences at Points A, B, and C When Misalignment Exists and t = 6.5647 mm

Tables Icon

Table 2 Optical Path Differences at Points A, B, and C When Misalignment Exists and t = 6.5389 mm

Tables Icon

Table 3 Theoretical and Measured Maximum Optical Path Differences at Points A, B, and C

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Δ = t [ n o 2 n e 2 n o 2 + n e 2 ( cos ω + sin ω ) sin i + n o 2 n e 2 2 ( n o 2 + n e 2 ) 3 n e 2 n o 2 ( cos 2 ω sin 2 ω ) sin 2 i + terms containing fourth and higher power of     sin i ] ,
Δ = t [ n o 2 n e 2 n o 2 + n e 2 ( cos ω + sin ω ) sin i + n o 2 n e 2 2 ( n o 2 + n e 2 ) 3 n e 2 n o 2 ( cos 2 ω sin 2 ω ) sin 2 i ] .
Δ A = t [ n o 2 n e 2 n o 2 + n e 2 sin i max + n o 2 n e 2 2 ( n o 2 + n e 2 ) 3 n e 2 n o 2 sin 2 i max ] ,
Δ B = t [ 2 × n o 2 n e 2 n o 2 + n e 2 sin i ] ,
Δ C = t [ n o 2 n e 2 n o 2 + n e 2 sin i max n o 2 n e 2 2 ( n o 2 + n e 2 ) 3 n e 2 n o 2 sin 2 i max ] .
R y = ( cos α sin α 0 sin α cos α 0 0 0 1 ) ,
R x = ( 1 0 0 0 cos β sin β 0 sin β cos β ) ,
( 1 0 0 0 cos β sin β 0 sin β cos β ) ( cos α sin α 0 sin α cos α 0 0 0 1 ) ( 1 0 0 ) = ( cos α sin α cos β sin α sin β ) .
cos W = M N | M | | N | = M N | N | ,
sin I = | S × L | | S | | L | = | S × L | ,
Δ = t [ n 0 2 n e 2 n 0 2 + n e 2 ( cos W + sin W ) sin I + n 0 2 n e 2 2 ( n 0 2 + n e 2 ) 3 n e 2 n 0 2 ( cos 2 W sin 2 W ) sin 2 I ] .
Δ A = t [ 0.111949538 sin ( 2 × 3.2965 ) + 0.039583970 sin 2 ( 2 × 3.2965 ) ] ,
Δ B = t [ 2 × 0.111949538 sin ( 3.2965 ) ] ,
Δ C = t [ 0.111949538 sin ( 2 × 3.2965 ) 0.039583970 sin 2 ( 2 × 3.2965 ) ] ,
Δ = t [ 0.111949538 ( cos W + sin W ) sin I + 0.039583970 ( cos 2 W sin 2 W ) sin 2 I ] .
n o 2 = 2.69705 + 0.0192064 / ( λ 2 0.01820 ) 0.0151624 λ 2 ,
n e 2 = 2.18438 + 0.0087309 / ( λ 2 0.01018 ) 0.0024411 λ 2 .

Metrics