Abstract

The presence of chloride in reinforced concrete can cause severe damage to the strength and durability of buildings and bridges. The detection of chloride in concrete structures at early stages of the corrosion buildup process is, therefore, very important. However, detection of chlorine in trace amounts in concrete is not a simple matter. A dual-pulsed laser-induced breakdown spectrometer (LIBS) has been developed at our laboratory for the detection of chloride contents in reinforced concrete by using two atomic transition lines of neutral chlorine (Cl I) at 594.8 and 837.5nm. A calibration curve was also established by using standard samples containing chloride in known concentration in the concrete. Our dual-pulsed LIBS system demonstrated a substantial improvement in the signal level at both wavelengths (594.8 and 837.5nm). However, the new atomic transition line at 594.8nm shows a significant improvement compared to the line at 837.5nm in spite of the fact that the relative intensity of the former is 0.1% of the latter. This weak signal level of the 837.5nm transition line of chlorine can be attributed to some kind of self-absorption process taking place in the case of the concrete sample.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wang, D. E. Nelsen, and W. A. Nixon, “Damaging effects of deicing chemicals on concrete materials,” Cem. Concr. Compos. 28, 173–188 (2006).
    [CrossRef]
  2. C. Andrade, C. Alonoso, and J. Sarria, “Corrosion rate evolution in concrete structure exposed to atmosphere,” Cem. Concr. Compos. 24, 55–64 (2002).
    [CrossRef]
  3. W. Lopez, J. A. Gonzalez, and C. Andrade, “Influence of temperature on the service life of rebars,” Cem. Concr. Res. 23, 1130–1140 (1993).
    [CrossRef]
  4. T. Ctvrtničkova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, “Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy,” Appl. Surf. Sci. 255, 5329–5333 (2009).
    [CrossRef]
  5. O. S. B. Al-Amoudi, “Protection of reinforced concrete structures in sulfate-chloride exposures,” in NACE Corrosion Conference and EXPO (National Association of Corrosion Engineers, 2007), paper 07279:16.
  6. O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of chloride ions on sulfate deterioration in plain and blended cements,” Mag. Concr. Res. 46, 113–123 (1994).
    [CrossRef]
  7. A. Neville, “Chloride attack of reinforced concrete: an overview,” Mater. Struct. 28, 63–70 (1995).
    [CrossRef]
  8. O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of sulfate ions on chloride-induced reinforcement corrosion in plain and blended cements,” Cem. Concr. Aggregates 16, 3–11 (1994).
    [CrossRef]
  9. A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge Univ. Press, 2006).
    [CrossRef]
  10. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef] [PubMed]
  11. J. Cũnat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
    [CrossRef]
  12. R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
    [CrossRef]
  13. M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: towards a new tool for trace element detection and molecular plasma,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper LWC3P.
  14. S. Laville, M. Sabsabi, and F. R. Doucet,” Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566(2007).
    [CrossRef]
  15. M. Sabsabi and R. Russo, “Fourth International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006),” Spectrochim. Acta B 621285–1286 (2007).
    [CrossRef]
  16. M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
    [CrossRef] [PubMed]
  17. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649(2007).
    [CrossRef] [PubMed]
  18. T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
    [CrossRef] [PubMed]
  19. M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
    [CrossRef]
  20. M. A. Gondal, T. Hussain, Z. Ahmed, and A. Bakry, “Detection of contaminants in ore samples using laser induced breakdown spectroscopy ,” J. Environ. Sci. Health A 42, 879–887(2007).
  21. M. A. Gondal, Z. Ahmad, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS.” J. Environ. Sci. Health A 44, 528–535 (2009).
    [CrossRef]
  22. M. A. Gondal, Z. S. Seddigi, M. M. Nasr, and B. Gondal, “Spectroscopic detection of health hazardous contaminants in lipstick using laser induced breakdown spectroscopy,” J. Hazard. Mater. 175, 726–732 (2010).
    [CrossRef]
  23. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
    [CrossRef]
  24. F. Colao, V. Lazik, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
    [CrossRef]
  25. NIST atomic spectra database, http://www.nist.gov/physlab/data/asd.cfm.
  26. H. F. W. Taylor, Cement Chemistry, 2nd ed. (Academic, 1997).
    [CrossRef]
  27. A. Miziolek, V. Palleschi, and I. Schecter,” Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge Univ. Press, 2006).
    [CrossRef]
  28. D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
    [CrossRef]
  29. A. J. Effenberger, Jr., and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
    [CrossRef]
  30. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
    [CrossRef]

2010 (4)

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: towards a new tool for trace element detection and molecular plasma,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper LWC3P.

M. A. Gondal, Z. S. Seddigi, M. M. Nasr, and B. Gondal, “Spectroscopic detection of health hazardous contaminants in lipstick using laser induced breakdown spectroscopy,” J. Hazard. Mater. 175, 726–732 (2010).
[CrossRef]

A. J. Effenberger, Jr., and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

2009 (5)

M. A. Gondal, Z. Ahmad, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS.” J. Environ. Sci. Health A 44, 528–535 (2009).
[CrossRef]

D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
[CrossRef]

T. Ctvrtničkova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, “Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy,” Appl. Surf. Sci. 255, 5329–5333 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

J. Cũnat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

2007 (8)

O. S. B. Al-Amoudi, “Protection of reinforced concrete structures in sulfate-chloride exposures,” in NACE Corrosion Conference and EXPO (National Association of Corrosion Engineers, 2007), paper 07279:16.

S. Laville, M. Sabsabi, and F. R. Doucet,” Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566(2007).
[CrossRef]

M. Sabsabi and R. Russo, “Fourth International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006),” Spectrochim. Acta B 621285–1286 (2007).
[CrossRef]

M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[CrossRef] [PubMed]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649(2007).
[CrossRef] [PubMed]

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef] [PubMed]

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. Ahmed, and A. Bakry, “Detection of contaminants in ore samples using laser induced breakdown spectroscopy ,” J. Environ. Sci. Health A 42, 879–887(2007).

2006 (3)

K. Wang, D. E. Nelsen, and W. A. Nixon, “Damaging effects of deicing chemicals on concrete materials,” Cem. Concr. Compos. 28, 173–188 (2006).
[CrossRef]

A. Miziolek, V. Palleschi, and I. Schecter,” Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

2002 (2)

F. Colao, V. Lazik, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

C. Andrade, C. Alonoso, and J. Sarria, “Corrosion rate evolution in concrete structure exposed to atmosphere,” Cem. Concr. Compos. 24, 55–64 (2002).
[CrossRef]

2001 (1)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

1997 (2)

H. F. W. Taylor, Cement Chemistry, 2nd ed. (Academic, 1997).
[CrossRef]

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

1995 (1)

A. Neville, “Chloride attack of reinforced concrete: an overview,” Mater. Struct. 28, 63–70 (1995).
[CrossRef]

1994 (2)

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of sulfate ions on chloride-induced reinforcement corrosion in plain and blended cements,” Cem. Concr. Aggregates 16, 3–11 (1994).
[CrossRef]

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of chloride ions on sulfate deterioration in plain and blended cements,” Mag. Concr. Res. 46, 113–123 (1994).
[CrossRef]

1993 (1)

W. Lopez, J. A. Gonzalez, and C. Andrade, “Influence of temperature on the service life of rebars,” Cem. Concr. Res. 23, 1130–1140 (1993).
[CrossRef]

Abduljawwad, S. N.

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of chloride ions on sulfate deterioration in plain and blended cements,” Mag. Concr. Res. 46, 113–123 (1994).
[CrossRef]

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of sulfate ions on chloride-induced reinforcement corrosion in plain and blended cements,” Cem. Concr. Aggregates 16, 3–11 (1994).
[CrossRef]

Ahmad, Z.

M. A. Gondal, Z. Ahmad, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS.” J. Environ. Sci. Health A 44, 528–535 (2009).
[CrossRef]

Ahmed, Z.

M. A. Gondal, T. Hussain, Z. Ahmed, and A. Bakry, “Detection of contaminants in ore samples using laser induced breakdown spectroscopy ,” J. Environ. Sci. Health A 42, 879–887(2007).

Al-Amoudi, O. S. B.

O. S. B. Al-Amoudi, “Protection of reinforced concrete structures in sulfate-chloride exposures,” in NACE Corrosion Conference and EXPO (National Association of Corrosion Engineers, 2007), paper 07279:16.

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of chloride ions on sulfate deterioration in plain and blended cements,” Mag. Concr. Res. 46, 113–123 (1994).
[CrossRef]

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of sulfate ions on chloride-induced reinforcement corrosion in plain and blended cements,” Cem. Concr. Aggregates 16, 3–11 (1994).
[CrossRef]

Alonoso, C.

C. Andrade, C. Alonoso, and J. Sarria, “Corrosion rate evolution in concrete structure exposed to atmosphere,” Cem. Concr. Compos. 24, 55–64 (2002).
[CrossRef]

Andrade, C.

C. Andrade, C. Alonoso, and J. Sarria, “Corrosion rate evolution in concrete structure exposed to atmosphere,” Cem. Concr. Compos. 24, 55–64 (2002).
[CrossRef]

W. Lopez, J. A. Gonzalez, and C. Andrade, “Influence of temperature on the service life of rebars,” Cem. Concr. Res. 23, 1130–1140 (1993).
[CrossRef]

Angel, S. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Baig, M. A.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649(2007).
[CrossRef] [PubMed]

Bakry, A.

M. A. Gondal, T. Hussain, Z. Ahmed, and A. Bakry, “Detection of contaminants in ore samples using laser induced breakdown spectroscopy ,” J. Environ. Sci. Health A 42, 879–887(2007).

Bakry, A. H.

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

Baudelet, M.

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: towards a new tool for trace element detection and molecular plasma,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper LWC3P.

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Cabalin, L.

T. Ctvrtničkova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, “Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy,” Appl. Surf. Sci. 255, 5329–5333 (2009).
[CrossRef]

Cavalli, P.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Chinni, R. C.

D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
[CrossRef]

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

F. Colao, V. Lazik, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Cremers, D. A.

D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
[CrossRef]

Ctvrtnickova, T.

T. Ctvrtničkova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, “Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy,” Appl. Surf. Sci. 255, 5329–5333 (2009).
[CrossRef]

Cunat, J.

J. Cũnat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Doucet, F. R.

S. Laville, M. Sabsabi, and F. R. Doucet,” Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566(2007).
[CrossRef]

Effenberger, A. J.

A. J. Effenberger, Jr., and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[CrossRef]

Eland, K. L.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

F. Colao, V. Lazik, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Fortes, F. J.

J. Cũnat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Gondal, B.

M. A. Gondal, Z. S. Seddigi, M. M. Nasr, and B. Gondal, “Spectroscopic detection of health hazardous contaminants in lipstick using laser induced breakdown spectroscopy,” J. Hazard. Mater. 175, 726–732 (2010).
[CrossRef]

Gondal, M. A.

M. A. Gondal, Z. S. Seddigi, M. M. Nasr, and B. Gondal, “Spectroscopic detection of health hazardous contaminants in lipstick using laser induced breakdown spectroscopy,” J. Hazard. Mater. 175, 726–732 (2010).
[CrossRef]

M. A. Gondal, Z. Ahmad, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS.” J. Environ. Sci. Health A 44, 528–535 (2009).
[CrossRef]

M. A. Gondal, T. Hussain, Z. Ahmed, and A. Bakry, “Detection of contaminants in ore samples using laser induced breakdown spectroscopy ,” J. Environ. Sci. Health A 42, 879–887(2007).

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef] [PubMed]

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[CrossRef] [PubMed]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649(2007).
[CrossRef] [PubMed]

Gonzalez, J. A.

W. Lopez, J. A. Gonzalez, and C. Andrade, “Influence of temperature on the service life of rebars,” Cem. Concr. Res. 23, 1130–1140 (1993).
[CrossRef]

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Hussain, T.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649(2007).
[CrossRef] [PubMed]

M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[CrossRef] [PubMed]

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. Ahmed, and A. Bakry, “Detection of contaminants in ore samples using laser induced breakdown spectroscopy ,” J. Environ. Sci. Health A 42, 879–887(2007).

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef] [PubMed]

Kanicky, V.

T. Ctvrtničkova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, “Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy,” Appl. Surf. Sci. 255, 5329–5333 (2009).
[CrossRef]

Lai, T.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Lasagna, J. J.

J. Cũnat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Laserna, J.

T. Ctvrtničkova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, “Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy,” Appl. Surf. Sci. 255, 5329–5333 (2009).
[CrossRef]

Laville, S.

S. Laville, M. Sabsabi, and F. R. Doucet,” Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566(2007).
[CrossRef]

Lazik, V.

F. Colao, V. Lazik, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Liu, Y.

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: towards a new tool for trace element detection and molecular plasma,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper LWC3P.

Lopez, W.

W. Lopez, J. A. Gonzalez, and C. Andrade, “Influence of temperature on the service life of rebars,” Cem. Concr. Res. 23, 1130–1140 (1993).
[CrossRef]

Maslehuddin, M.

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of chloride ions on sulfate deterioration in plain and blended cements,” Mag. Concr. Res. 46, 113–123 (1994).
[CrossRef]

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of sulfate ions on chloride-induced reinforcement corrosion in plain and blended cements,” Cem. Concr. Aggregates 16, 3–11 (1994).
[CrossRef]

Miziolek, A.

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

A. Miziolek, V. Palleschi, and I. Schecter,” Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Nasr, M. M.

M. A. Gondal, Z. S. Seddigi, M. M. Nasr, and B. Gondal, “Spectroscopic detection of health hazardous contaminants in lipstick using laser induced breakdown spectroscopy,” J. Hazard. Mater. 175, 726–732 (2010).
[CrossRef]

M. A. Gondal, Z. Ahmad, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS.” J. Environ. Sci. Health A 44, 528–535 (2009).
[CrossRef]

Nelsen, D. E.

K. Wang, D. E. Nelsen, and W. A. Nixon, “Damaging effects of deicing chemicals on concrete materials,” Cem. Concr. Compos. 28, 173–188 (2006).
[CrossRef]

Neuhauser, R. E.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Neville, A.

A. Neville, “Chloride attack of reinforced concrete: an overview,” Mater. Struct. 28, 63–70 (1995).
[CrossRef]

Nicolas, G.

T. Ctvrtničkova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, “Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy,” Appl. Surf. Sci. 255, 5329–5333 (2009).
[CrossRef]

Niessner, R.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Nixon, W. A.

K. Wang, D. E. Nelsen, and W. A. Nixon, “Damaging effects of deicing chemicals on concrete materials,” Cem. Concr. Compos. 28, 173–188 (2006).
[CrossRef]

Omenetto, N.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Palleschi, V.

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

A. Miziolek, V. Palleschi, and I. Schecter,” Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

Pannev, U.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Pershin, S.

F. Colao, V. Lazik, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Petrucci, G. A.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

Rasheeduzzafar, M.

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of sulfate ions on chloride-induced reinforcement corrosion in plain and blended cements,” Cem. Concr. Aggregates 16, 3–11 (1994).
[CrossRef]

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of chloride ions on sulfate deterioration in plain and blended cements,” Mag. Concr. Res. 46, 113–123 (1994).
[CrossRef]

Richardson, M.

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: towards a new tool for trace element detection and molecular plasma,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper LWC3P.

Russo, R.

M. Sabsabi and R. Russo, “Fourth International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006),” Spectrochim. Acta B 621285–1286 (2007).
[CrossRef]

Sabsabi, M.

S. Laville, M. Sabsabi, and F. R. Doucet,” Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566(2007).
[CrossRef]

M. Sabsabi and R. Russo, “Fourth International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006),” Spectrochim. Acta B 621285–1286 (2007).
[CrossRef]

Sarria, J.

C. Andrade, C. Alonoso, and J. Sarria, “Corrosion rate evolution in concrete structure exposed to atmosphere,” Cem. Concr. Compos. 24, 55–64 (2002).
[CrossRef]

Schecter, I.

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

A. Miziolek, V. Palleschi, and I. Schecter,” Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

Scott, J. R.

A. J. Effenberger, Jr., and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[CrossRef]

Seddigi, Z. S.

M. A. Gondal, Z. S. Seddigi, M. M. Nasr, and B. Gondal, “Spectroscopic detection of health hazardous contaminants in lipstick using laser induced breakdown spectroscopy,” J. Hazard. Mater. 175, 726–732 (2010).
[CrossRef]

Stratis, D. N.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Taylor, H. F. W.

H. F. W. Taylor, Cement Chemistry, 2nd ed. (Academic, 1997).
[CrossRef]

Wang, K.

K. Wang, D. E. Nelsen, and W. A. Nixon, “Damaging effects of deicing chemicals on concrete materials,” Cem. Concr. Compos. 28, 173–188 (2006).
[CrossRef]

Yamani, Z. H.

M. A. Gondal, Z. Ahmad, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS.” J. Environ. Sci. Health A 44, 528–535 (2009).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649(2007).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Anal. Chim. Acta (2)

J. Cũnat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Appl. Spectrosc. Rev. (1)

D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

T. Ctvrtničkova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, “Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy,” Appl. Surf. Sci. 255, 5329–5333 (2009).
[CrossRef]

Cem. Concr. Aggregates (1)

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of sulfate ions on chloride-induced reinforcement corrosion in plain and blended cements,” Cem. Concr. Aggregates 16, 3–11 (1994).
[CrossRef]

Cem. Concr. Compos. (2)

K. Wang, D. E. Nelsen, and W. A. Nixon, “Damaging effects of deicing chemicals on concrete materials,” Cem. Concr. Compos. 28, 173–188 (2006).
[CrossRef]

C. Andrade, C. Alonoso, and J. Sarria, “Corrosion rate evolution in concrete structure exposed to atmosphere,” Cem. Concr. Compos. 24, 55–64 (2002).
[CrossRef]

Cem. Concr. Res. (1)

W. Lopez, J. A. Gonzalez, and C. Andrade, “Influence of temperature on the service life of rebars,” Cem. Concr. Res. 23, 1130–1140 (1993).
[CrossRef]

Detection of contaminants in ore samples using laser induced breakdown spectroscopy (1)

M. A. Gondal, T. Hussain, Z. Ahmed, and A. Bakry, “Detection of contaminants in ore samples using laser induced breakdown spectroscopy ,” J. Environ. Sci. Health A 42, 879–887(2007).

Environ. Monit. Assess. (1)

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef] [PubMed]

J. Anal. At. Spectrom. (1)

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

J. Anal. Chem. (1)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual and ultra short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

J. Environ. Sci. Health A (2)

M. A. Gondal, T. Hussain, Z. H. Yamani, and A. H. Bakry, “Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy,” J. Environ. Sci. Health A 42, 767–775 (2007).
[CrossRef]

M. A. Gondal, Z. Ahmad, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS.” J. Environ. Sci. Health A 44, 528–535 (2009).
[CrossRef]

J. Hazard. Mater. (1)

M. A. Gondal, Z. S. Seddigi, M. M. Nasr, and B. Gondal, “Spectroscopic detection of health hazardous contaminants in lipstick using laser induced breakdown spectroscopy,” J. Hazard. Mater. 175, 726–732 (2010).
[CrossRef]

Mag. Concr. Res. (1)

O. S. B. Al-Amoudi, M. Rasheeduzzafar, M. Maslehuddin, and S. N. Abduljawwad, “Influence of chloride ions on sulfate deterioration in plain and blended cements,” Mag. Concr. Res. 46, 113–123 (1994).
[CrossRef]

Mater. Struct. (1)

A. Neville, “Chloride attack of reinforced concrete: an overview,” Mater. Struct. 28, 63–70 (1995).
[CrossRef]

Sensors (1)

A. J. Effenberger, Jr., and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[CrossRef]

Spectrochim. Acta B (3)

F. Colao, V. Lazik, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

S. Laville, M. Sabsabi, and F. R. Doucet,” Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566(2007).
[CrossRef]

M. Sabsabi and R. Russo, “Fourth International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2006),” Spectrochim. Acta B 621285–1286 (2007).
[CrossRef]

Talanta (2)

M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[CrossRef] [PubMed]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 72, 642–649(2007).
[CrossRef] [PubMed]

Other (6)

M. Baudelet, Y. Liu, and M. Richardson, “Microwave-assisted LIBS: towards a new tool for trace element detection and molecular plasma,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper LWC3P.

A. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

O. S. B. Al-Amoudi, “Protection of reinforced concrete structures in sulfate-chloride exposures,” in NACE Corrosion Conference and EXPO (National Association of Corrosion Engineers, 2007), paper 07279:16.

NIST atomic spectra database, http://www.nist.gov/physlab/data/asd.cfm.

H. F. W. Taylor, Cement Chemistry, 2nd ed. (Academic, 1997).
[CrossRef]

A. Miziolek, V. Palleschi, and I. Schecter,” Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge Univ. Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of experimental setup of the dual-pulsed LIBS system.

Fig. 2
Fig. 2

LIBS spectrum of a concrete sample showing different elements present in the concrete in the 280–380 and 380 480 nm regions.

Fig. 3
Fig. 3

Grotrian diagram showing the atomic transitions of Cl I at 594.858  and 837.594 nm for the two marker atomic lines used for the detection of chloride.

Fig. 4
Fig. 4

LIBS spectrum of the concrete sample showing the atomic transition line at 594.858 nm and also transitions due to the pres ence of other elements in this spectral region.

Fig. 5
Fig. 5

LIBS spectrum of the concrete sample at five different concentrations of chlorine in concrete samples with the 594.858 nm atomic transition as a marker: (a) 3.5%, (b) 1.5%, (c) 1%, (d) 0.4%, and (e) 0.2% of chlorine by weight of cement in concrete.

Fig. 6
Fig. 6

LIBS spectrum of the concrete sample showing the atomic transition line at 837.594 nm and also transitions due to the pres ence of other elements in this spectral region.

Fig. 7
Fig. 7

LIBS spectrum of the concrete sample at five different concentrations of chlorine in concrete samples with the 837.594 nm atomic transition as a marker: (a) 3.5%, (b) 1.5%, (c) 1%, (d) 0.4%, and (e) 0.2% of chlorine by weight in concrete.

Fig. 8
Fig. 8

Calibration curve for the detection of chloride using the 594.858 and 837.594 nm transition lines as markers.

Tables (1)

Tables Icon

Table 1 Identification of the Atomic Transitions of Various Elements Present in the Concrete Sample and Their Assignments

Metrics