Abstract

We observe strong infrared (IR) radiation as a result of passive dispersive wave generation for a realistic microstructured fiber having two zero-dispersion wavelengths. The IR radiation frequency can be suitably controlled by varying the operational wavelength, which falls in the first normal dispersion regime. The amplitude of the radiation can be significantly increased by introducing a suitable amount of chirp in the input pulse. This strong phase-matching radiation can be considered as an alternative solution for the IR laser for different applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
    [Crossref] [PubMed]
  2. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [Crossref] [PubMed]
  3. B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunneling in photonic crystal fiber with sub-wavelength core defect,” Electron. Lett. 43, 967–968(2007).
    [Crossref]
  4. F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
    [Crossref]
  5. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defect-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365–8371 (2005).
    [Crossref] [PubMed]
  6. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
    [Crossref]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).
  8. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effect of higher order dispersion on resonant dispersive wave emitted by solitons,” Opt. Lett. 34, 2072–2074 (2009).
    [Crossref] [PubMed]
  9. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006).
    [Crossref] [PubMed]
  10. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fiber,” Science 301, 1705–1708 (2003).
    [Crossref] [PubMed]
  11. F. Benabid, F. Biancalana, P. S. Light, F. Couny, A. Luiten, P. J. Roberts, J. Peng, and A. V. Sokolov, “Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding,” Opt. Lett. 33, 2680–2682 (2008).
    [Crossref] [PubMed]
  12. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
    [Crossref]
  13. S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.
  14. D. Lei, H. Dong, S. Wen, and H. Yang, “Manipulating dispersive wave generation by frequency chirp in photonic crystal fibers,” J. Lightwave Technol. 27, 4501–4507 (2009).
    [Crossref]

2011 (1)

S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.

2009 (3)

2008 (4)

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[Crossref]

F. Benabid, F. Biancalana, P. S. Light, F. Couny, A. Luiten, P. J. Roberts, J. Peng, and A. V. Sokolov, “Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding,” Opt. Lett. 33, 2680–2682 (2008).
[Crossref] [PubMed]

2007 (1)

B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunneling in photonic crystal fiber with sub-wavelength core defect,” Electron. Lett. 43, 967–968(2007).
[Crossref]

2006 (1)

2005 (1)

2003 (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fiber,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

2001 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
[Crossref] [PubMed]

Agrawal, G. P.

S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effect of higher order dispersion on resonant dispersive wave emitted by solitons,” Opt. Lett. 34, 2072–2074 (2009).
[Crossref] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006).
[Crossref] [PubMed]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
[Crossref] [PubMed]

Benabid, F.

Bhadra, S. K.

S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effect of higher order dispersion on resonant dispersive wave emitted by solitons,” Opt. Lett. 34, 2072–2074 (2009).
[Crossref] [PubMed]

Biancalana, F.

Couny, F.

Courvoisier, F.

B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunneling in photonic crystal fiber with sub-wavelength core defect,” Electron. Lett. 43, 967–968(2007).
[Crossref]

Dong, H.

Dudley, J. M.

B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunneling in photonic crystal fiber with sub-wavelength core defect,” Electron. Lett. 43, 967–968(2007).
[Crossref]

Florous, N.

Ghosh, D.

S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Horak, P.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[Crossref]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
[Crossref] [PubMed]

Kibler, B.

B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunneling in photonic crystal fiber with sub-wavelength core defect,” Electron. Lett. 43, 967–968(2007).
[Crossref]

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fiber,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Koshiba, M.

S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.

K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defect-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365–8371 (2005).
[Crossref] [PubMed]

Kwok, Y. C.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
[Crossref]

Lacourt, P. A.

B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunneling in photonic crystal fiber with sub-wavelength core defect,” Electron. Lett. 43, 967–968(2007).
[Crossref]

Lei, D.

Light, P. S.

Lin, Q.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fiber,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Luiten, A.

Ngo, N.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
[Crossref]

Peng, J.

Poletti, F.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[Crossref]

Ren, G. B.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
[Crossref]

Richardson, D. J.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[Crossref]

Roberts, P. J.

Roy, S.

S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effect of higher order dispersion on resonant dispersive wave emitted by solitons,” Opt. Lett. 34, 2072–2074 (2009).
[Crossref] [PubMed]

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fiber,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Saitoh, K.

S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.

K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defect-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365–8371 (2005).
[Crossref] [PubMed]

Shum, P.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
[Crossref]

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fiber,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Sokolov, A. V.

Sun, Y.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
[Crossref]

Wen, S.

Yang, H.

Yu, X.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
[Crossref]

Electron. Lett. (1)

B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunneling in photonic crystal fiber with sub-wavelength core defect,” Electron. Lett. 43, 967–968(2007).
[Crossref]

IEEE Photon. Technol. Lett. (2)

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[Crossref]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defect-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20, 336–338 (2008).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fiber,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).

S. Roy, D. Ghosh, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Impact of chirp on spectral recoil of solitons in a defect-core photonic fiber with two zero dispersion wavelengths,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper-OTuA2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Variation of nonlinear coefficient (γ) (blue dashed curve) and leakage loss (green solid curve) of FM over wavelength is shown for the proposed defect core PCF (inset). (b) Comparison of the leakage loss for four ring and seven ring structures.

Fig. 2
Fig. 2

Dispersion profile of the proposed defect core PCF. Inset shows the fundamental field distribution at 1520 nm .

Fig. 3
Fig. 3

Spectrogram is plotted at normalized propagation distance ξ = 3.5 for a sixth-order soliton that is launched at the wavelength of 1520 nm . The recoiling radiation appears at roughly 1925 nm and the DW generates at 2027 nm , as indicated in the figure. The two vertical white dotted lines represent the ZDWs and the curved dotted line corresponds to the group delay.

Fig. 4
Fig. 4

Generation of strong IR radiation as a passive DW at one normalized distance ( ξ = 1 ) for different operating wavelengths. The soliton order is N = 6 .

Fig. 5
Fig. 5

Variation of the radiation wavelength with pump wavelength. The blue circles represent the simulated data and the red triangles show the data obtained from the PM condition (Eq. (5)). The green squares represent the peak amplitudes of the corresponding DWs at ξ = 10 .

Fig. 6
Fig. 6

Critical normalized distance ( ξ 20 dB ) as a function of operating wavelengths is given by the red dots whereas the corresponding values in actual units are depicted as green triangles.

Fig. 7
Fig. 7

Improvement of the peak amplitude of DW radiation is shown for three different chirp values at four different operating wavelengths. The blue (lower), red (middle), and black (upper) curves represent the input chirp C = 0 , 0.5, and 1, respectively. In all four cases, the spectra is plotted at a distance for which the radiation peak reaches 20 dB for the input pulse having chirp C = 0.5 .

Fig. 8
Fig. 8

(a) Growth of the peak amplitude of the DW radiation is shown over distance for three different chirp values C = 0 (blue lower curve), 0.5 (green middle curve), and 1 (red upper curve), at operating wavelengths of 1520 nm with soliton order N = 6 . (b) Energy transfer is plotted as a function of propagation distance for the same set of parameters.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U ξ = i 2 2 U τ 2 + m 3 i m + 1 δ m m U τ m + i N 2 ( 1 + i s τ ) ( U ( ξ , τ ) τ R ( τ τ ) | U ( ξ , τ ) | 2 d τ ) ,
R ( τ ) = ( 1 f R ) δ ( τ ) + f R h R ( τ ) ,
h R ( τ ) = ( f a + f c ) h a ( τ ) + f b h b ( τ ) ,
h a ( τ ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( τ τ 2 ) sin ( τ τ 1 ) , h b ( τ ) = ( 2 τ b τ τ b 2 ) exp ( τ τ b )
m = 2 β m ( ω s ) m ! ( ω d ω s ) m = 1 2 γ P s ,

Metrics