Abstract

In this work, we present an alternative approach to angular velocity optical sensing based on two-ring resonators. This configuration admits the use of a standard laser diode source (0.1nm, 10,000 MHz, FWHM) reaching higher sensitivities when narrow spectral laser sources (1MHz, FWHM) are used. We compare this configuration with the standard single-ring resonator angular rate sensor (SRARS), which must use a narrow laser at input. Finally, we conclude that the sensitivity of this new approach can also be enhanced by coupling high-power broadband laser sources in a large range (from 1°/h to 10,000°/h), reaching performance similar to that of a standard SRARS configuration.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd ed. (Institution of Electrical Engineers, 2004).
    [CrossRef]
  2. A. Lawrence and J. L. Weston, Modern Inertial Technology Navigation Guidance, and Control (Springer-Verlag, 1998).
  3. C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.
  4. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
    [CrossRef]
  5. L. N. Binh, N. Q. Ngo, and S. F. Luk, “Graphical representation and analysis of the Z-shaped double-coupler optical resonator,” J. Lightwave Technol. 11, 1782–1792 (1993).
    [CrossRef]
  6. M. Terrel, M. J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
    [CrossRef]
  7. C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007).
    [CrossRef] [PubMed]
  8. E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
    [CrossRef]
  9. C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
    [CrossRef]
  10. M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.
  11. C. Ciminelli, C. E. Campanella, and M. N. Ármense, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
    [CrossRef]
  12. D. G. Rabus, Integrated Ring Resonators: The Compedium (Springer-Verlag, 2007).
  13. K. Okamoto, Fundamentals of Optical Waveguides(Elsevier, 2006).
  14. F. G. Stremler, Signals Systems Introduction (Addison-Wesley, 1990).

2009 (2)

M. Terrel, M. J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[CrossRef]

C. Ciminelli, C. E. Campanella, and M. N. Ármense, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

2007 (3)

C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007).
[CrossRef] [PubMed]

D. G. Rabus, Integrated Ring Resonators: The Compedium (Springer-Verlag, 2007).

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.

2006 (1)

K. Okamoto, Fundamentals of Optical Waveguides(Elsevier, 2006).

2005 (1)

C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
[CrossRef]

2004 (1)

D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd ed. (Institution of Electrical Engineers, 2004).
[CrossRef]

2003 (1)

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.

2000 (1)

1998 (1)

A. Lawrence and J. L. Weston, Modern Inertial Technology Navigation Guidance, and Control (Springer-Verlag, 1998).

1993 (1)

L. N. Binh, N. Q. Ngo, and S. F. Luk, “Graphical representation and analysis of the Z-shaped double-coupler optical resonator,” J. Lightwave Technol. 11, 1782–1792 (1993).
[CrossRef]

1990 (1)

F. G. Stremler, Signals Systems Introduction (Addison-Wesley, 1990).

1967 (1)

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Armadillo, E.

C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
[CrossRef]

Armenise, M. N.

C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.

Ármense, M. N.

Bandini, B.

C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
[CrossRef]

Binh, L. N.

L. N. Binh, N. Q. Ngo, and S. F. Luk, “Graphical representation and analysis of the Z-shaped double-coupler optical resonator,” J. Lightwave Technol. 11, 1782–1792 (1993).
[CrossRef]

Campanella, C. E.

Catalano, N.

C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
[CrossRef]

Ciminelli, C.

C. Ciminelli, C. E. Campanella, and M. N. Ármense, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.

De Leonardis, F.

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.

Diana, R.

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.

Digonnet, M. J. F.

M. Terrel, M. J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[CrossRef]

Fan, S.

M. Terrel, M. J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[CrossRef]

Hotate, K.

Lawrence, A.

A. Lawrence and J. L. Weston, Modern Inertial Technology Navigation Guidance, and Control (Springer-Verlag, 1998).

Li, Z.

Luk, S. F.

L. N. Binh, N. Q. Ngo, and S. F. Luk, “Graphical representation and analysis of the Z-shaped double-coupler optical resonator,” J. Lightwave Technol. 11, 1782–1792 (1993).
[CrossRef]

Ngo, N. Q.

L. N. Binh, N. Q. Ngo, and S. F. Luk, “Graphical representation and analysis of the Z-shaped double-coupler optical resonator,” J. Lightwave Technol. 11, 1782–1792 (1993).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides(Elsevier, 2006).

Passaro, V. M. N.

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.

Peluso, F.

C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.

Peng, C.

Post, E. J.

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Quiring, V.

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.

Rabus, D. G.

D. G. Rabus, Integrated Ring Resonators: The Compedium (Springer-Verlag, 2007).

Reza, S.

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.

Ricken, R.

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.

Sohler, W.

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.

Stremler, F. G.

F. G. Stremler, Signals Systems Introduction (Addison-Wesley, 1990).

Suche, H.

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.

Suzuki, K.

Takiguchi, K.

Terrel, M.

M. Terrel, M. J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[CrossRef]

Titterton, D. H.

D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd ed. (Institution of Electrical Engineers, 2004).
[CrossRef]

Vannahme, C.

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.

Weston, J. L.

D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd ed. (Institution of Electrical Engineers, 2004).
[CrossRef]

A. Lawrence and J. L. Weston, Modern Inertial Technology Navigation Guidance, and Control (Springer-Verlag, 1998).

Xu, A.

J. Lightwave Technol. (3)

Laser Photon. Rev. (1)

M. Terrel, M. J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

C. Ciminelli, B. Bandini, F. Peluso, N. Catalano, E. Armadillo, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE , 5728, 93–100 (2005).
[CrossRef]

Rev. Mod. Phys. (1)

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Other (7)

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. M. N. Passaro, and F. Peluso, “Gyroscope technologies for space applications,” in 4th Round Table for Micro-Nano Technologies for Space (European Space Agency—European Space Research and Technology Centre, 2003), pp. 1–26.

D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd ed. (Institution of Electrical Engineers, 2004).
[CrossRef]

A. Lawrence and J. L. Weston, Modern Inertial Technology Navigation Guidance, and Control (Springer-Verlag, 1998).

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in Conference Proceedings ECIO 2007. European Conference on Integrated Optics (The Technical University of Denmark, 2007), paper WE1.

D. G. Rabus, Integrated Ring Resonators: The Compedium (Springer-Verlag, 2007).

K. Okamoto, Fundamentals of Optical Waveguides(Elsevier, 2006).

F. G. Stremler, Signals Systems Introduction (Addison-Wesley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SRARS scheme. R 1 and K 11 correspond to the radius of the ring and the coupling coefficient between the input waveguide and the ring resonator, respectively.

Fig. 2
Fig. 2

Generic spectral response of SRARS transfer function (dashed curve) and a narrow light source (solid curve) used for the SRARS systems.

Fig. 3
Fig. 3

DRARS scheme. For details, see the text.

Fig. 4
Fig. 4

Scheme of frequency shift caused by the Sagnac effect on T 21 × G 2 (lower solid curve) and T 22 (higher solid line). Solid and dashed curves represent the mentioned functions before and after angular rotation, respectively.

Fig. 5
Fig. 5

Spectral response of DRARS. Output spectral distribution of intensity from ring R 21 ( T 21 × G 2 ) with a light source of 10,000 MHz of spectral width (solid curve) and isolated transfer function T 22 corresponding to ring R 22 (dashed curve).

Fig. 6
Fig. 6

DRARS and SRARS theoretical optical power variation for different values of loss coefficient (α).

Tables (2)

Tables Icon

Table 1 Parameter Values, Corresponding to SRARS and DRARS Systems, Used in Simulation

Tables Icon

Table 2 DRARS Optical Power Variation [W] for ω = 100 ° / h and α = 0.1 dB / cm and Different Combinations of K 21 and K 22

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T = T ( ν , α , K , N eff , L ) .
I DRARS = + G 2 ( ν ) · T 21 ( ν ) · T 22 ( ν ) · d ν ,
G 2 ( ν ) = P laser A l · g ( ν ) ,
I SRARS = + G 1 ( ν ) · T 1 ( ν ) · d ν ,
d l = 2 · A · ω c ,
L = L o + d l ,

Metrics