Abstract

To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO2 films with inclusions of different sizes and different depths induced by a 1ms long-pulse and a 10ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Glass and A. H. Guenther, “Damage in laser materials,” Appl. Opt. 11, 832–840 (1972).
    [CrossRef] [PubMed]
  2. J. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
    [CrossRef] [PubMed]
  3. S. Papernov and A. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
    [CrossRef]
  4. S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
    [CrossRef]
  5. B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
    [CrossRef]
  6. S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906–114909(2005).
    [CrossRef]
  7. S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
    [CrossRef] [PubMed]
  8. B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49, 5537–5544 (2010).
    [CrossRef] [PubMed]
  9. X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103–033107 (2010).
    [CrossRef]
  10. X. Wang, D. Zhu, Z. Shen, J. Lu, and X. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation,” Appl. Surf. Sci. 257, 1583–1588 (2010).
    [CrossRef]
  11. H. Hu, Z. Fan, and F. Luo, “Laser-induced damage of a 1064 nm ZnS/MgF2MgF2 narrow-band interference filter,” Appl. Opt. 40, 1950–1956 (2001).
    [CrossRef]
  12. H.-B. He, H.-Y. Hu, Z.-P. Tang, Z.-X. Fan, and J.-D. Shao, “Laser-induced damage morphology of high-reflective optical coatings,” Appl. Surf. Sci. 241, 442–448 (2005).
    [CrossRef]
  13. Z. Fan, Q. Zhao, and Z. Wu, “Temperature field design of optical thin film coatings,” Proc. SPIE 2966, 362–370 (1997).
    [CrossRef]
  14. X. F. Tang, Z. X. Fan, and Z. J. Wang, “Surface inclusion adhesion of optical coatings,” Opt. Eng. 33, 3406–3410(1994).
    [CrossRef]
  15. Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
    [CrossRef]
  16. M. Mansuripur, G. A. N. Connell, and J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]
  17. L. Gallais and M. Commandré, “Photothermal deflection in multilayer coatings: modeling and experiment,” Appl. Opt. 44, 5230–5238 (2005).
    [CrossRef] [PubMed]
  18. G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
    [CrossRef]
  19. A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
    [CrossRef]
  20. S. Papernov and A. W. Schmid, “Heat transfer from localized absorbing defects to the host coating material in HfO2/SiO2 multilayer systems,” Proc. SPIE 2966, 283–291 (1997).
    [CrossRef]
  21. Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
    [CrossRef]
  22. Q. Zhao, Z. Wu, M. Thomsen, Y. Han, and Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
    [CrossRef]

2011 (1)

Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
[CrossRef]

2010 (5)

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103–033107 (2010).
[CrossRef]

X. Wang, D. Zhu, Z. Shen, J. Lu, and X. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation,” Appl. Surf. Sci. 257, 1583–1588 (2010).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49, 5537–5544 (2010).
[CrossRef] [PubMed]

2006 (1)

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

2005 (4)

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906–114909(2005).
[CrossRef]

H.-B. He, H.-Y. Hu, Z.-P. Tang, Z.-X. Fan, and J.-D. Shao, “Laser-induced damage morphology of high-reflective optical coatings,” Appl. Surf. Sci. 241, 442–448 (2005).
[CrossRef]

L. Gallais and M. Commandré, “Photothermal deflection in multilayer coatings: modeling and experiment,” Appl. Opt. 44, 5230–5238 (2005).
[CrossRef] [PubMed]

2002 (2)

S. Papernov and A. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
[CrossRef]

J. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
[CrossRef] [PubMed]

2001 (1)

1998 (1)

Q. Zhao, Z. Wu, M. Thomsen, Y. Han, and Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

1997 (3)

S. Papernov and A. W. Schmid, “Heat transfer from localized absorbing defects to the host coating material in HfO2/SiO2 multilayer systems,” Proc. SPIE 2966, 283–291 (1997).
[CrossRef]

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

Z. Fan, Q. Zhao, and Z. Wu, “Temperature field design of optical thin film coatings,” Proc. SPIE 2966, 362–370 (1997).
[CrossRef]

1994 (1)

X. F. Tang, Z. X. Fan, and Z. J. Wang, “Surface inclusion adhesion of optical coatings,” Opt. Eng. 33, 3406–3410(1994).
[CrossRef]

1990 (1)

A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
[CrossRef]

1982 (1)

1972 (1)

Akhouayri, H.

Allen, S. D.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Amra, C.

Bertussi, B.

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Bi, J.

Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
[CrossRef]

Bonneau, F.

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Bouchut, P.

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Combis, P.

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Commandre, M.

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Commandré, M.

Connell, G. A. N.

Dai, G.

Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
[CrossRef]

Fan, Z.

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

H. Hu, Z. Fan, and F. Luo, “Laser-induced damage of a 1064 nm ZnS/MgF2MgF2 narrow-band interference filter,” Appl. Opt. 40, 1950–1956 (2001).
[CrossRef]

Q. Zhao, Z. Wu, M. Thomsen, Y. Han, and Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

Z. Fan, Q. Zhao, and Z. Wu, “Temperature field design of optical thin film coatings,” Proc. SPIE 2966, 362–370 (1997).
[CrossRef]

Fan, Z. X.

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

X. F. Tang, Z. X. Fan, and Z. J. Wang, “Surface inclusion adhesion of optical coatings,” Opt. Eng. 33, 3406–3410(1994).
[CrossRef]

Fan, Z.-X.

H.-B. He, H.-Y. Hu, Z.-P. Tang, Z.-X. Fan, and J.-D. Shao, “Laser-induced damage morphology of high-reflective optical coatings,” Appl. Surf. Sci. 241, 442–448 (2005).
[CrossRef]

Gallais, L.

Glass, A. J.

Goodman, J. W.

Guenther, A. H.

A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
[CrossRef]

A. J. Glass and A. H. Guenther, “Damage in laser materials,” Appl. Opt. 11, 832–840 (1972).
[CrossRef] [PubMed]

Han, Y.

Q. Zhao, Z. Wu, M. Thomsen, Y. Han, and Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

He, H.

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

He, H. B.

He, H.-B.

H.-B. He, H.-Y. Hu, Z.-P. Tang, Z.-X. Fan, and J.-D. Shao, “Laser-induced damage morphology of high-reflective optical coatings,” Appl. Surf. Sci. 241, 442–448 (2005).
[CrossRef]

Hu, G.

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Hu, H.

Hu, H.-Y.

H.-B. He, H.-Y. Hu, Z.-P. Tang, Z.-X. Fan, and J.-D. Shao, “Laser-induced damage morphology of high-reflective optical coatings,” Appl. Surf. Sci. 241, 442–448 (2005).
[CrossRef]

Jin, Y.

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Kudryashov, S. I.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Li, D. W.

Li, S. H.

Ling, X. L.

Liu, G.

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Liu, X.

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Lu, J.

X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103–033107 (2010).
[CrossRef]

X. Wang, D. Zhu, Z. Shen, J. Lu, and X. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation,” Appl. Surf. Sci. 257, 1583–1588 (2010).
[CrossRef]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49, 5537–5544 (2010).
[CrossRef] [PubMed]

Luo, F.

Mansuripur, M.

McIver, J. K.

A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
[CrossRef]

Natoli, J.

Natoli, J. Y.

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Ni, X.

X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103–033107 (2010).
[CrossRef]

X. Wang, D. Zhu, Z. Shen, J. Lu, and X. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation,” Appl. Surf. Sci. 257, 1583–1588 (2010).
[CrossRef]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49, 5537–5544 (2010).
[CrossRef] [PubMed]

Ni, X. W.

Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
[CrossRef]

Papernov, S.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906–114909(2005).
[CrossRef]

S. Papernov and A. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
[CrossRef]

S. Papernov and A. W. Schmid, “Heat transfer from localized absorbing defects to the host coating material in HfO2/SiO2 multilayer systems,” Proc. SPIE 2966, 283–291 (1997).
[CrossRef]

Qin, Y.

Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
[CrossRef]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49, 5537–5544 (2010).
[CrossRef] [PubMed]

Rullier, J. L.

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Schmid, A.

S. Papernov and A. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
[CrossRef]

Schmid, A. W.

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906–114909(2005).
[CrossRef]

S. Papernov and A. W. Schmid, “Heat transfer from localized absorbing defects to the host coating material in HfO2/SiO2 multilayer systems,” Proc. SPIE 2966, 283–291 (1997).
[CrossRef]

Shao, J.-D.

H.-B. He, H.-Y. Hu, Z.-P. Tang, Z.-X. Fan, and J.-D. Shao, “Laser-induced damage morphology of high-reflective optical coatings,” Appl. Surf. Sci. 241, 442–448 (2005).
[CrossRef]

Shen, Z.

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49, 5537–5544 (2010).
[CrossRef] [PubMed]

X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103–033107 (2010).
[CrossRef]

X. Wang, D. Zhu, Z. Shen, J. Lu, and X. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation,” Appl. Surf. Sci. 257, 1583–1588 (2010).
[CrossRef]

Tang, X. F.

X. F. Tang, Z. X. Fan, and Z. J. Wang, “Surface inclusion adhesion of optical coatings,” Opt. Eng. 33, 3406–3410(1994).
[CrossRef]

Tang, Z.-P.

H.-B. He, H.-Y. Hu, Z.-P. Tang, Z.-X. Fan, and J.-D. Shao, “Laser-induced damage morphology of high-reflective optical coatings,” Appl. Surf. Sci. 241, 442–448 (2005).
[CrossRef]

Thomsen, M.

Q. Zhao, Z. Wu, M. Thomsen, Y. Han, and Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

Wang, B.

Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
[CrossRef]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49, 5537–5544 (2010).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103–033107 (2010).
[CrossRef]

X. Wang, D. Zhu, Z. Shen, J. Lu, and X. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation,” Appl. Surf. Sci. 257, 1583–1588 (2010).
[CrossRef]

Wang, Z. J.

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

X. F. Tang, Z. X. Fan, and Z. J. Wang, “Surface inclusion adhesion of optical coatings,” Opt. Eng. 33, 3406–3410(1994).
[CrossRef]

Wu, Z.

Q. Zhao, Z. Wu, M. Thomsen, Y. Han, and Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

Z. Fan, Q. Zhao, and Z. Wu, “Temperature field design of optical thin film coatings,” Proc. SPIE 2966, 362–370 (1997).
[CrossRef]

Zhang, X. H.

Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
[CrossRef]

Zhao, Q.

Q. Zhao, Z. Wu, M. Thomsen, Y. Han, and Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

Z. Fan, Q. Zhao, and Z. Wu, “Temperature field design of optical thin film coatings,” Proc. SPIE 2966, 362–370 (1997).
[CrossRef]

Zhao, Y. A.

Zhou, M.

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

Zhu, D.

X. Wang, D. Zhu, Z. Shen, J. Lu, and X. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation,” Appl. Surf. Sci. 257, 1583–1588 (2010).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (1)

S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, “Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles,” Appl. Phys. B 82, 523–527 (2006).
[CrossRef]

Appl. Surf. Sci. (3)

X. Wang, D. Zhu, Z. Shen, J. Lu, and X. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation,” Appl. Surf. Sci. 257, 1583–1588 (2010).
[CrossRef]

H.-B. He, H.-Y. Hu, Z.-P. Tang, Z.-X. Fan, and J.-D. Shao, “Laser-induced damage morphology of high-reflective optical coatings,” Appl. Surf. Sci. 241, 442–448 (2005).
[CrossRef]

G. Liu, M. Zhou, G. Hu, X. Liu, Y. Jin, H. He, and Z. Fan, “Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355 nm,” Appl. Surf. Sci. 256, 4206–4210 (2010).
[CrossRef]

J. Appl. Phys. (3)

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97, 114906–114909(2005).
[CrossRef]

X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103–033107 (2010).
[CrossRef]

S. Papernov and A. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002).
[CrossRef]

Opt. Commun. (1)

B. Bertussi, J. Y. Natoli, M. Commandre, J. L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Opt. Eng. (2)

X. F. Tang, Z. X. Fan, and Z. J. Wang, “Surface inclusion adhesion of optical coatings,” Opt. Eng. 33, 3406–3410(1994).
[CrossRef]

Q. Zhao, Z. X. Fan, and Z. J. Wang, “Role of interface absorption in laser-induced local heating of optical coatings,” Opt. Eng. 36, 1530–1536 (1997).
[CrossRef]

Opt. Laser Technol. (1)

Y. Qin, G. Dai, B. Wang, X. W. Ni, J. Bi, and X. H. Zhang, “Investigating the effect of gravity on long pulsed laser drilling,” Opt. Laser Technol. 43, 563–569 (2011).
[CrossRef]

Proc. SPIE (4)

Q. Zhao, Z. Wu, M. Thomsen, Y. Han, and Z. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[CrossRef]

A. H. Guenther and J. K. McIver, “Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage,” Proc. SPIE 1270, 66–71 (1990).
[CrossRef]

S. Papernov and A. W. Schmid, “Heat transfer from localized absorbing defects to the host coating material in HfO2/SiO2 multilayer systems,” Proc. SPIE 2966, 283–291 (1997).
[CrossRef]

Z. Fan, Q. Zhao, and Z. Wu, “Temperature field design of optical thin film coatings,” Proc. SPIE 2966, 362–370 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the film model with Pt inclusion irradiated by laser.

Fig. 2
Fig. 2

Maximum film temperature rises at the end of laser pulses versus radius of Pt inclusion.

Fig. 3
Fig. 3

Maximum temperature rises (including film and substrate) at the end of pulse versus the depth of Pt inclusion induced by a 10 ns short-pulse laser.

Fig. 4
Fig. 4

Maximum temperature rises (including film and substrate) at the end of pulse versus the depth of Pt inclusion induced by 1 ms long-pulse laser.

Fig. 5
Fig. 5

Standing-wave electric field of TiO 2 films.

Fig. 6
Fig. 6

Laser-damage morphologies of TiO 2 film components: (a)  1 ms long-pulse laser, (b)  10 ns short-pulse laser.

Fig. 7
Fig. 7

The ratios of TiO 2 maximum temperature to K 9 maximum temperature and TiO 2 melting point to K 9 melting point versus depth of Pt inclusion.

Tables (2)

Tables Icon

Table 1 Summary of Parameters Used for Calculations and Analysis

Tables Icon

Table 2 Maximum Temperatures of Film and Substrate When T i O 2 Film Components with Pt Inclusions of Different Depths Damaged by a 1 ms Pulse Laser

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

c i ρ i ( t ) T ( r , z , t ) κ i 2 T ( r , z , t ) = q i ( r , z , t ) 0 r r 0 ,
c h ρ h ( t ) T ( r , z , t ) κ h 2 T ( r , z , t ) = q h ( r , z , t ) r > r 0 ,
κ h ( r ) T ( r , z , t ) | r = L = κ s ( z ) T ( r , z , t ) | z = H = 0 ,
T ( r , z , 0 ) = T 0 ,
T i ( r 0 ) = T h ( r 0 ) ,
κ i T i r | r = r 0 = κ h T h r | r = r 0 .
q i ( r , z , t ) = p ( 1 r 2 r 2 + z 2 ) α i | E ( z ) | 2 n i I ( r , t ) exp [ α i · ( z h + r 0 2 r 2 ) ]
q h ( r , z , t ) = α h | E ( z ) | 2 n h I ( r , t ) ,
I ( r , t ) = I 0 f ( r ) g ( t ) ,
f ( r ) = exp ( 2 r 2 a 0 2 ) ,
g ( t ) = { 1 , 0 < t τ 0 , t > τ .

Metrics