Abstract

In this paper, an automated optimization method in the sequential mode of ZEMAX is proposed in the design of an aspheric lens with uniform illuminance for an LED source. A feedback modification is introduced in the design for the LED extended source. The user-defined merit function is written out by using ZEMAX programming language macros language and, as an example, optimum parameters of an aspheric lens are obtained via running an optimization. The optical simulation results show that the illumination efficiency and uniformity can reach 83% and 90%, respectively, on a target surface of 40mm diameter and at 60mm away for a 1×1mm LED source.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo- rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
    [CrossRef]
  2. L. Wang, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46, 3716–3723 (2007).
    [CrossRef] [PubMed]
  3. J. Bortz, N. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
    [CrossRef]
  4. B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
    [CrossRef]
  5. S. Kudaev and P. Schreiber, “Automated optimization of non-imaging optics for luminaires,” Proc. SPIE 5962, 59620B(2005).
    [CrossRef]
  6. W. Z. Zhang, Q. X. Liu, H. F. Gao, and F. H. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49, 063003 (2010).
    [CrossRef]
  7. H. Ries, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
    [CrossRef]
  8. H. Ries and J. Muschaweck, “Tailoring freeform lenses for illumination,” Proc. SPIE 4442, 43–50 (2001).
    [CrossRef]
  9. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966(2008).
    [CrossRef] [PubMed]
  10. Y. Ding and P. F. Gu, “Freeform reflector for uniform illumination,” Acta Optica Sinica 27, 540–544 (2007).
  11. Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48, 6627–6634 (2009).
    [CrossRef]
  12. F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
    [CrossRef]
  13. F. Fournier and J. Rolland, “Optimization of freeform lightpipes for light-emitting-diode projectors,” Appl. Opt. 47, 957–966 (2008).
    [CrossRef] [PubMed]
  14. Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
    [CrossRef]

2010

W. Z. Zhang, Q. X. Liu, H. F. Gao, and F. H. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49, 063003 (2010).
[CrossRef]

Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
[CrossRef]

2009

Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48, 6627–6634 (2009).
[CrossRef]

F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
[CrossRef]

2008

2007

Y. Ding and P. F. Gu, “Freeform reflector for uniform illumination,” Acta Optica Sinica 27, 540–544 (2007).

L. Wang, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46, 3716–3723 (2007).
[CrossRef] [PubMed]

2006

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo- rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
[CrossRef]

2005

S. Kudaev and P. Schreiber, “Automated optimization of non-imaging optics for luminaires,” Proc. SPIE 5962, 59620B(2005).
[CrossRef]

2002

2001

H. Ries and J. Muschaweck, “Tailoring freeform lenses for illumination,” Proc. SPIE 4442, 43–50 (2001).
[CrossRef]

B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
[CrossRef]

2000

J. Bortz, N. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

Bortz, J.

J. Bortz, N. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

Chen, F.

F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
[CrossRef]

Ding, Y.

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966(2008).
[CrossRef] [PubMed]

Y. Ding and P. F. Gu, “Freeform reflector for uniform illumination,” Acta Optica Sinica 27, 540–544 (2007).

Feng, Z. X.

Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
[CrossRef]

Fournier, F.

Gao, H. F.

W. Z. Zhang, Q. X. Liu, H. F. Gao, and F. H. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49, 063003 (2010).
[CrossRef]

Gengelbach, R. D.

B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
[CrossRef]

Gu, P. F.

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966(2008).
[CrossRef] [PubMed]

Y. Ding and P. F. Gu, “Freeform reflector for uniform illumination,” Acta Optica Sinica 27, 540–544 (2007).

Han, Y. J.

Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
[CrossRef]

Hao, X.

Jacobson, B. A.

B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
[CrossRef]

Kudaev, S.

S. Kudaev and P. Schreiber, “Automated optimization of non-imaging optics for luminaires,” Proc. SPIE 5962, 59620B(2005).
[CrossRef]

Li, H. T.

Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
[CrossRef]

Liu, Q. X.

W. Z. Zhang, Q. X. Liu, H. F. Gao, and F. H. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49, 063003 (2010).
[CrossRef]

Liu, S.

F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
[CrossRef]

Liu, X.

Liu, Z. Y.

F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
[CrossRef]

Luo, X. B.

F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
[CrossRef]

Luo, Y.

Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
[CrossRef]

Muschaweck, J.

H. Ries and J. Muschaweck, “Tailoring freeform lenses for illumination,” Proc. SPIE 4442, 43–50 (2001).
[CrossRef]

Parkyn, B.

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo- rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
[CrossRef]

Pelka, D.

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo- rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
[CrossRef]

Pitou, D.

J. Bortz, N. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

Ries, H.

H. Ries, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
[CrossRef]

H. Ries and J. Muschaweck, “Tailoring freeform lenses for illumination,” Proc. SPIE 4442, 43–50 (2001).
[CrossRef]

Rolland, J.

Schreiber, P.

S. Kudaev and P. Schreiber, “Automated optimization of non-imaging optics for luminaires,” Proc. SPIE 5962, 59620B(2005).
[CrossRef]

Shatz, N.

J. Bortz, N. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

Wang, K.

F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
[CrossRef]

Wang, L.

Yu, F. H.

W. Z. Zhang, Q. X. Liu, H. F. Gao, and F. H. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49, 063003 (2010).
[CrossRef]

Zhang, W. Z.

W. Z. Zhang, Q. X. Liu, H. F. Gao, and F. H. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49, 063003 (2010).
[CrossRef]

Zheng, Z. R.

Acta Optica Sinica

Y. Ding and P. F. Gu, “Freeform reflector for uniform illumination,” Acta Optica Sinica 27, 540–544 (2007).

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Eng.

W. Z. Zhang, Q. X. Liu, H. F. Gao, and F. H. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49, 063003 (2010).
[CrossRef]

F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
[CrossRef]

Opt. Express

Proc. SPIE

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo- rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
[CrossRef]

H. Ries and J. Muschaweck, “Tailoring freeform lenses for illumination,” Proc. SPIE 4442, 43–50 (2001).
[CrossRef]

J. Bortz, N. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
[CrossRef]

S. Kudaev and P. Schreiber, “Automated optimization of non-imaging optics for luminaires,” Proc. SPIE 5962, 59620B(2005).
[CrossRef]

Other

Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Framework of the optical module.

Fig. 2
Fig. 2

Simple model of the refraction part.

Fig. 3
Fig. 3

Simple model of the TIR part.

Fig. 4
Fig. 4

Sketch of the incident angle, (a)  θ i > θ c and (b)  θ i θ c .

Fig. 5
Fig. 5

Flow chart to clarify the free-form surface lens design with extended source.

Fig. 6
Fig. 6

Layout of the model used for free-form lens design.

Fig. 7
Fig. 7

Views of the optimized free-form lens design. (a) Back view and (b) front view.

Fig. 8
Fig. 8

Illuminance pattern generated with the initial lens.

Fig. 9
Fig. 9

Illuminance pattern generated with the optimized lens.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

I ( θ ) = I 0 cos θ ,
Φ total = I ( θ ) d Ω = π I 0 sin 2 θ max .
Φ total = 0 R max E ( y ) · 2 π y d y = E 0 · S .
Φ total = Φ total .
ϕ i = 1 n Φ 1 = 1 n π I 0 sin 2 θ c , i = 1 , 2 , 3 n .
ϕ i = 0 2 π θ i 1 θ i I 0 cos θ sin θ d θ d φ = π I 0 ( sin 2 θ i sin 2 θ i 1 ) , θ 0 = 0 , i = 1 , 2 , 3 n .
θ i = sin 1 [ ( i n ) 1 / 2 sin θ c ] , i = 1 , 2 , 3 n .
y i = R · sin θ i sin θ c , i = 1 , 2 , 3 n ,
ϕ i = 1 n Φ 2 = 1 n π I 0 ( sin 2 θ max sin 2 θ c ) , i = 1 , 2 , 3 n .
ϕ i = π I 0 ( sin 2 θ i sin 2 θ i 1 ) , θ 0 = θ c , i = 1 , 2 , 3 n .
θ i = sin 1 [ ( i n · sin 2 θ max + n i n · sin 2 θ c ) 1 / 2 ] , i = 1 , 2 , 3 n .
y i = R · ( sin 2 θ max sin 2 θ i sin 2 θ max sin 2 θ c ) 1 / 2 , i = 1 , 2 , 3 n ,
{ ϕ i = Φ 1 R 2 · y i 2 i ( θ i θ c ) ϕ i = Φ 2 R 2 · y i 2 n i ( θ i > θ c ) .
{ η 1 = Φ 1 image Φ 1 = 1 Φ 1 · i ϕ i = 1 R 2 i y i 2 i ( θ i θ c ) η 2 = Φ 2 image Φ 2 = 1 Φ 2 · i ϕ i = 1 R 2 i y i 2 n i ( θ i > θ c ) ,
η = η 1 · Φ 1 + η 2 · Φ 2 Φ 1 + Φ 2 .
RSD = σ E ¯ = 1 n · i = 1 n ( E i E ¯ 1 ) 2 .
{ RSD 1 = 1 n · i = 1 n ( i · R 2 n · y i 2 1 ) 2 ( θ i θ c ) RSD 2 = 1 n · i = 1 n ( ( n + i ) · R 2 n · y i 2 1 ) 2 ( θ i > θ c ) .
RSD = RSD 1 + RSD 2 2 .
{ h x = 0 , h y = 0 p x = 0 , p y ( i ) = θ i θ max ,
{ θ i = sin 1 [ ( i n ) 1 / 2 · sin θ c ] , ( θ i θ c ) θ i = sin 1 [ ( i n · sin 2 θ max + n i n · sin 2 θ c ) 1 / 2 ] , ( θ i > θ c ) , i = 1 , 2 , 3 n .
MF = i = 1 n ( y i y i ) 2 ,
ϕ j = π I 0 · sin 2 θ j j , j = 1 , 2 , 3 n . ( θ j θ c ) ,
ϕ j = π I 0 · sin 2 θ j sin 2 θ c j , j = 1 , 2 , 3 n . ( θ j > θ c ) .
ϕ j = 1 ρ j · ϕ j .
{ θ j = sin 1 [ ( 1 ρ j ) 1 / 2 · sin θ j ] , ( θ j θ c ) θ j = sin 1 [ ( 1 ρ j · sin 2 θ j + ρ j 1 ρ j · sin 2 θ c ) 1 / 2 ] , ( θ j > θ c ) , j = 1 , 2 , 3 n .
p y ( j ) = θ j θ max , j = 1 , 2 , 3 n ,

Metrics