Abstract

We experimentally demonstrate an all-optical exclusive-OR (XOR) gate with optical feedback using a highly Ge-doped nonlinear fiber. The XOR is achieved based on cross-polarization rotation in nonlinear fiber, while the optical feedback employs a terahertz optical asymmetric demultiplexer (TOAD). The TOAD simultaneously cleans up the XOR output and converts the wavelength of the feedback signal to allow proper feedback operation. The performance of the all-optical XOR gate with optical feedback is studied through both experimental and simulation analysis. An open eye diagram of the XOR output in feedback mode is obtained experimentally, and a correct logic operation in feedback mode is proved through simulation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno and T. Matsumoto, “Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams,” Opt. Lett. 16, 220–222 (1991).
    [CrossRef] [PubMed]
  2. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
    [CrossRef]
  3. H. Soto, D. Erasme, and G. Guekos, “5 Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13, 335–337 (2001).
    [CrossRef]
  4. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
    [CrossRef]
  5. J. M. Martinez, F. Ramos, and J. Marti, “All-optical packet header processor based on cascaded SOA-MZIs,” Electron. Lett. 40, 894–895 (2004).
    [CrossRef]
  6. C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
    [CrossRef]
  7. K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron. 3, 698–701(1997).
    [CrossRef]
  8. M. P. Fok and P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34, 1315–1317 (2009).
    [CrossRef] [PubMed]
  9. M. P. Fok and C. Shu, “Exclusive-OR gate for RZ-DPSK signals using four-wave mixing in a highly nonlinear bismuth-oxide fiber,” in European Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, 2007), paper CD6-3.
  10. D. M. Lai, C. H. Kwok, and K. K. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362–18370 (2008).
    [CrossRef] [PubMed]
  11. A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “160 Gb/s time-domain channel extraction/insertion and all-optical logic operations exploiting a single PPLN waveguide,” J. Lightwave Technol. 27, 4221–4227 (2009).
    [CrossRef]
  12. J. M. Martinez, J. Herrera, F. Ramos, and J. Marti, “All-optical correlation employing single logic XOR gate with feedback,” Electron. Lett. 42, 1170–1171 (2006).
    [CrossRef]
  13. A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
    [CrossRef]
  14. W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory, 2nd ed. (Prentice-Hall, 2005).
  15. M. P. Fok, W. Trappe, and P. R. Prucnal, “All-optical XOR gate with feedback using highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OWF7.
  16. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
    [CrossRef]
  17. E. Dianov and V. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005).
    [CrossRef]
  18. K. Kravtsov, Y.-K. Huang and P. R. Prucnal, “All-optical 160 Gbits/s time-domain demultiplexer based on the heavily GeO2-doped silica-based nonlinear fiber,” Opt. Lett. 34, 491–493 (2009).
    [CrossRef] [PubMed]
  19. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122(2007).
    [CrossRef] [PubMed]
  20. M. P. Fok and P. R. Prucnal, “Four-wave mixing in highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OMG4.

2009 (3)

2008 (1)

2007 (1)

2006 (1)

J. M. Martinez, J. Herrera, F. Ramos, and J. Marti, “All-optical correlation employing single logic XOR gate with feedback,” Electron. Lett. 42, 1170–1171 (2006).
[CrossRef]

2005 (2)

E. Dianov and V. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005).
[CrossRef]

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

2004 (1)

J. M. Martinez, F. Ramos, and J. Marti, “All-optical packet header processor based on cascaded SOA-MZIs,” Electron. Lett. 40, 894–895 (2004).
[CrossRef]

2002 (1)

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

2001 (1)

H. Soto, D. Erasme, and G. Guekos, “5 Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13, 335–337 (2001).
[CrossRef]

2000 (1)

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

1999 (1)

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

1997 (1)

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron. 3, 698–701(1997).
[CrossRef]

1993 (1)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[CrossRef]

1991 (1)

Blow, K. J.

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

Bogoni, A.

Bubnov, M. M.

Byun, Y. T.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Christen, L.

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Coquelin, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Dagens, B.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Dianov, E.

Erasme, D.

H. Soto, D. Erasme, and G. Guekos, “5 Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13, 335–337 (2001).
[CrossRef]

Fazal, I.

Fjelde, T.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Fok, M. P.

M. P. Fok and P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34, 1315–1317 (2009).
[CrossRef] [PubMed]

M. P. Fok and C. Shu, “Exclusive-OR gate for RZ-DPSK signals using four-wave mixing in a highly nonlinear bismuth-oxide fiber,” in European Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, 2007), paper CD6-3.

M. P. Fok, W. Trappe, and P. R. Prucnal, “All-optical XOR gate with feedback using highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OWF7.

M. P. Fok and P. R. Prucnal, “Four-wave mixing in highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OMG4.

Gaborit, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Glesk, I.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Guekos, G.

H. Soto, D. Erasme, and G. Guekos, “5 Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13, 335–337 (2001).
[CrossRef]

Guillemot, I.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Herrera, J.

J. M. Martinez, J. Herrera, F. Ramos, and J. Marti, “All-optical correlation employing single logic XOR gate with feedback,” Electron. Lett. 42, 1170–1171 (2006).
[CrossRef]

Huang, Y.-K.

Hunziker, G.

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron. 3, 698–701(1997).
[CrossRef]

Jhon, Y. M.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Jinno, M.

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Kelly, A. E.

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

Kim, J. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Kim, S. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Kloch, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Kravtsov, K.

Kwok, C. H.

Lai, D. M.

Lee, S.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Luo, T.

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Manning, R. J.

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

Marti, J.

J. M. Martinez, J. Herrera, F. Ramos, and J. Marti, “All-optical correlation employing single logic XOR gate with feedback,” Electron. Lett. 42, 1170–1171 (2006).
[CrossRef]

J. M. Martinez, F. Ramos, and J. Marti, “All-optical packet header processor based on cascaded SOA-MZIs,” Electron. Lett. 40, 894–895 (2004).
[CrossRef]

Martinez, J. M.

J. M. Martinez, J. Herrera, F. Ramos, and J. Marti, “All-optical correlation employing single logic XOR gate with feedback,” Electron. Lett. 42, 1170–1171 (2006).
[CrossRef]

J. M. Martinez, F. Ramos, and J. Marti, “All-optical packet header processor based on cascaded SOA-MZIs,” Electron. Lett. 40, 894–895 (2004).
[CrossRef]

Mashinsky, V.

Matsumoto, T.

Paiella, R.

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron. 3, 698–701(1997).
[CrossRef]

Pan, Z. Q.

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Poingt, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Poustie, A. J.

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

Prucnal, P. R.

K. Kravtsov, Y.-K. Huang and P. R. Prucnal, “All-optical 160 Gbits/s time-domain demultiplexer based on the heavily GeO2-doped silica-based nonlinear fiber,” Opt. Lett. 34, 491–493 (2009).
[CrossRef] [PubMed]

M. P. Fok and P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34, 1315–1317 (2009).
[CrossRef] [PubMed]

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122(2007).
[CrossRef] [PubMed]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[CrossRef]

M. P. Fok, W. Trappe, and P. R. Prucnal, “All-optical XOR gate with feedback using highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OWF7.

M. P. Fok and P. R. Prucnal, “Four-wave mixing in highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OMG4.

Ramos, F.

J. M. Martinez, J. Herrera, F. Ramos, and J. Marti, “All-optical correlation employing single logic XOR gate with feedback,” Electron. Lett. 42, 1170–1171 (2006).
[CrossRef]

J. M. Martinez, F. Ramos, and J. Marti, “All-optical packet header processor based on cascaded SOA-MZIs,” Electron. Lett. 40, 894–895 (2004).
[CrossRef]

Renaud, M.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Shu, C.

M. P. Fok and C. Shu, “Exclusive-OR gate for RZ-DPSK signals using four-wave mixing in a highly nonlinear bismuth-oxide fiber,” in European Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, 2007), paper CD6-3.

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Soto, H.

H. Soto, D. Erasme, and G. Guekos, “5 Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13, 335–337 (2001).
[CrossRef]

Trappe, W.

W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory, 2nd ed. (Prentice-Hall, 2005).

M. P. Fok, W. Trappe, and P. R. Prucnal, “All-optical XOR gate with feedback using highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OWF7.

Vahala, K.

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron. 3, 698–701(1997).
[CrossRef]

Wang, Y.

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Washington, L. C.

W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory, 2nd ed. (Prentice-Hall, 2005).

Willner, A. E.

A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “160 Gb/s time-domain channel extraction/insertion and all-optical logic operations exploiting a single PPLN waveguide,” J. Lightwave Technol. 27, 4221–4227 (2009).
[CrossRef]

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Wolfson, D.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

Wong, K. K.

Woo, D. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Wu, X.

Yan, L. S.

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Yu, C. Y.

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Electron. Lett. (3)

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863–1864 (2000).
[CrossRef]

J. M. Martinez, F. Ramos, and J. Marti, “All-optical packet header processor based on cascaded SOA-MZIs,” Electron. Lett. 40, 894–895 (2004).
[CrossRef]

J. M. Martinez, J. Herrera, F. Ramos, and J. Marti, “All-optical correlation employing single logic XOR gate with feedback,” Electron. Lett. 42, 1170–1171 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron. 3, 698–701(1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

C. Y. Yu, L. Christen, T. Luo, Y. Wang, Z. Q. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, “5 Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13, 335–337 (2001).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (4)

M. P. Fok and P. R. Prucnal, “Four-wave mixing in highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OMG4.

W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory, 2nd ed. (Prentice-Hall, 2005).

M. P. Fok, W. Trappe, and P. R. Prucnal, “All-optical XOR gate with feedback using highly Ge-doped nonlinear fiber,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OWF7.

M. P. Fok and C. Shu, “Exclusive-OR gate for RZ-DPSK signals using four-wave mixing in a highly nonlinear bismuth-oxide fiber,” in European Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, 2007), paper CD6-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of cross-polarization rotation (a) with only one control signal and (b) with two control signals.

Fig. 2
Fig. 2

Schematic illustration of the demonstrated optical XOR gate with feedback. EOM, electro-optics intensity modulator; HDF, highly Ge-doped nonlinear fiber; POL, polarizer; TOAD, terahertz optical asymmetric demultiplexer.

Fig. 3
Fig. 3

Measured temporal profiles of the XOR gate in single-pass mode: (a) Control 1, (b) Control 2, (c) output of the optical gate when Control 1 and Control 2 are not aligned, (d) intermediate XOR output when Control 1 and Control 2 are aligned, (e) final XOR output after the TOAD, (f) measured eye diagram of the XOR gate in feedback mode.

Fig. 4
Fig. 4

Simulated temporal profiles: (a) Control 1 with PRBS pattern, (b) Control 2 with first 8 bits as initial input (as shown in the rectangular box) and the rest as XOR feedback, (c) final XOR output.

Fig. 5
Fig. 5

Simulated eye diagram of the final XOR output in feedback mode.

Metrics