Abstract

The interaction of a large temperature-dependent refractive index and a temperature-dependent absorption of semiconductor materials at 1550nm can be used to build a very sensitive, film coated fiber-optic temperature probe. We developed a sensor model for the optical fiber-germanium film sensor. A temperature sensitivity of reflectivity change of 0.0012/°C, corresponding to 0.1°C considering a moderate signal processing system, over 100°C within the temperature regime of 20°C to 120°C, has been demonstrated by experimental tests of the novel sensor. The potential sensitivity and further applications of the sensor are discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao, M. Rong, and Y. B. Liao, “Fiber optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J. 3, 400–403 (2003).
    [CrossRef]
  2. K. Kyumn, S. Tai, T. Sawada, and M. Nunoshita, “Fiber optical instrument for temperature measurement,” IEEE J. Quantum Electron. 18, 676–679 (1982).
    [CrossRef]
  3. M. M. Salour, G. Schoner, M. Kull, and J. H. Bechtel, “Semiconductor platelet fiber optic temperature sensor,” Electron. Lett. 21,135–136 (1985).
    [CrossRef]
  4. M. F. Sultan and M. J. O’Rourke, “Temperature sensing by band gap optics absorption in semiconductors,” Proc. SPIE 2839, 191–202 (1996).
    [CrossRef]
  5. C. Tanguy, “Temperature dependence of the refractive index of direct band gap semiconductors near the absorption threshold: application to GaAs,” J. Appl. Phys. 80, 4626–4633 (1996).
    [CrossRef]
  6. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
    [CrossRef]
  7. J. Jasny, B. Nickel, and P. Borowicz, “Wavelength and temperature-dependent measurement of refractive indices,” J. Opt. Soc. Am. B 21, 729–738 (2004).
    [CrossRef]
  8. P. J. L. Hen and L. K. J. Vandamme, “Empirical temperature dependence of the refractive index of semiconductors,” J. Appl. Phys. 77, 5476–5478 (1995).
    [CrossRef]
  9. N. Cherroret, A. Chakravarty, and A. Kar, “Temperature-dependent refractive index of semiconductors,” J. Mater Sci. 43, 1795–1801 (2008).
    [CrossRef]
  10. L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
    [CrossRef]
  11. A. Himeno and M. Yamaguchi, “Recent progress on silica-based optical switches and free-space optical switches,” Proc. SPIE 2691, 72–81 (1996).
    [CrossRef]
  12. X. Sun, M. Li, C. Zhou, and Y. L. Li, “Linearity analysis of fiber-optic temperature sensor based on semiconductor optical absorption,” Acta. Opt. Sin. 28 (S2), 335–338 (2008).
  13. Wikipedia, “Fused quartz,” http://en.wikipedia.org/wiki/Fused_quartz.
  14. S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009).
    [CrossRef]
  15. V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
    [CrossRef]
  16. “Index of refraction,” http://www.cvilaser.com/Common/PDFs/Index_of_Refraction.pdf.
  17. T. M. Donovan and W. E. Spicer, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
    [CrossRef]

2009

S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009).
[CrossRef]

2008

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
[CrossRef]

N. Cherroret, A. Chakravarty, and A. Kar, “Temperature-dependent refractive index of semiconductors,” J. Mater Sci. 43, 1795–1801 (2008).
[CrossRef]

X. Sun, M. Li, C. Zhou, and Y. L. Li, “Linearity analysis of fiber-optic temperature sensor based on semiconductor optical absorption,” Acta. Opt. Sin. 28 (S2), 335–338 (2008).

2006

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

2004

J. Jasny, B. Nickel, and P. Borowicz, “Wavelength and temperature-dependent measurement of refractive indices,” J. Opt. Soc. Am. B 21, 729–738 (2004).
[CrossRef]

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
[CrossRef]

2003

Y. Zhao, M. Rong, and Y. B. Liao, “Fiber optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J. 3, 400–403 (2003).
[CrossRef]

1996

A. Himeno and M. Yamaguchi, “Recent progress on silica-based optical switches and free-space optical switches,” Proc. SPIE 2691, 72–81 (1996).
[CrossRef]

M. F. Sultan and M. J. O’Rourke, “Temperature sensing by band gap optics absorption in semiconductors,” Proc. SPIE 2839, 191–202 (1996).
[CrossRef]

C. Tanguy, “Temperature dependence of the refractive index of direct band gap semiconductors near the absorption threshold: application to GaAs,” J. Appl. Phys. 80, 4626–4633 (1996).
[CrossRef]

1995

P. J. L. Hen and L. K. J. Vandamme, “Empirical temperature dependence of the refractive index of semiconductors,” J. Appl. Phys. 77, 5476–5478 (1995).
[CrossRef]

1985

M. M. Salour, G. Schoner, M. Kull, and J. H. Bechtel, “Semiconductor platelet fiber optic temperature sensor,” Electron. Lett. 21,135–136 (1985).
[CrossRef]

1982

K. Kyumn, S. Tai, T. Sawada, and M. Nunoshita, “Fiber optical instrument for temperature measurement,” IEEE J. Quantum Electron. 18, 676–679 (1982).
[CrossRef]

1970

T. M. Donovan and W. E. Spicer, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

Assanto, G.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
[CrossRef]

Bechtel, J. H.

M. M. Salour, G. Schoner, M. Kull, and J. H. Bechtel, “Semiconductor platelet fiber optic temperature sensor,” Electron. Lett. 21,135–136 (1985).
[CrossRef]

Borowicz, P.

Chakravarty, A.

N. Cherroret, A. Chakravarty, and A. Kar, “Temperature-dependent refractive index of semiconductors,” J. Mater Sci. 43, 1795–1801 (2008).
[CrossRef]

Cherroret, N.

N. Cherroret, A. Chakravarty, and A. Kar, “Temperature-dependent refractive index of semiconductors,” J. Mater Sci. 43, 1795–1801 (2008).
[CrossRef]

Colace, L.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
[CrossRef]

Donovan, T. M.

T. M. Donovan and W. E. Spicer, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

Fang, Q.

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
[CrossRef]

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

Gupta, V.

S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009).
[CrossRef]

Hen, P. J. L.

P. J. L. Hen and L. K. J. Vandamme, “Empirical temperature dependence of the refractive index of semiconductors,” J. Appl. Phys. 77, 5476–5478 (1995).
[CrossRef]

Himeno, A.

A. Himeno and M. Yamaguchi, “Recent progress on silica-based optical switches and free-space optical switches,” Proc. SPIE 2691, 72–81 (1996).
[CrossRef]

Jasny, J.

Kar, A.

N. Cherroret, A. Chakravarty, and A. Kar, “Temperature-dependent refractive index of semiconductors,” J. Mater Sci. 43, 1795–1801 (2008).
[CrossRef]

Kimerling, L. C.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
[CrossRef]

Kull, M.

M. M. Salour, G. Schoner, M. Kull, and J. H. Bechtel, “Semiconductor platelet fiber optic temperature sensor,” Electron. Lett. 21,135–136 (1985).
[CrossRef]

Kyumn, K.

K. Kyumn, S. Tai, T. Sawada, and M. Nunoshita, “Fiber optical instrument for temperature measurement,” IEEE J. Quantum Electron. 18, 676–679 (1982).
[CrossRef]

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

Li, F.

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
[CrossRef]

Li, M.

X. Sun, M. Li, C. Zhou, and Y. L. Li, “Linearity analysis of fiber-optic temperature sensor based on semiconductor optical absorption,” Acta. Opt. Sin. 28 (S2), 335–338 (2008).

Li, Y. L.

X. Sun, M. Li, C. Zhou, and Y. L. Li, “Linearity analysis of fiber-optic temperature sensor based on semiconductor optical absorption,” Acta. Opt. Sin. 28 (S2), 335–338 (2008).

Li, Z. M.

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
[CrossRef]

Liao, Y. B.

Y. Zhao, M. Rong, and Y. B. Liao, “Fiber optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J. 3, 400–403 (2003).
[CrossRef]

Luan, H. C.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
[CrossRef]

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

Mehan, N.

S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009).
[CrossRef]

Nickel, B.

Nunoshita, M.

K. Kyumn, S. Tai, T. Sawada, and M. Nunoshita, “Fiber optical instrument for temperature measurement,” IEEE J. Quantum Electron. 18, 676–679 (1982).
[CrossRef]

O’Rourke, M. J.

M. F. Sultan and M. J. O’Rourke, “Temperature sensing by band gap optics absorption in semiconductors,” Proc. SPIE 2839, 191–202 (1996).
[CrossRef]

Perna, A.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
[CrossRef]

Rong, M.

Y. Zhao, M. Rong, and Y. B. Liao, “Fiber optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J. 3, 400–403 (2003).
[CrossRef]

Saha, S.

S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009).
[CrossRef]

Salour, M. M.

M. M. Salour, G. Schoner, M. Kull, and J. H. Bechtel, “Semiconductor platelet fiber optic temperature sensor,” Electron. Lett. 21,135–136 (1985).
[CrossRef]

Sawada, T.

K. Kyumn, S. Tai, T. Sawada, and M. Nunoshita, “Fiber optical instrument for temperature measurement,” IEEE J. Quantum Electron. 18, 676–679 (1982).
[CrossRef]

Schoner, G.

M. M. Salour, G. Schoner, M. Kull, and J. H. Bechtel, “Semiconductor platelet fiber optic temperature sensor,” Electron. Lett. 21,135–136 (1985).
[CrossRef]

Sorianello, V.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
[CrossRef]

Spicer, W. E.

T. M. Donovan and W. E. Spicer, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

Sreenivas, K.

S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009).
[CrossRef]

Sultan, M. F.

M. F. Sultan and M. J. O’Rourke, “Temperature sensing by band gap optics absorption in semiconductors,” Proc. SPIE 2839, 191–202 (1996).
[CrossRef]

Sun, X.

X. Sun, M. Li, C. Zhou, and Y. L. Li, “Linearity analysis of fiber-optic temperature sensor based on semiconductor optical absorption,” Acta. Opt. Sin. 28 (S2), 335–338 (2008).

Tai, S.

K. Kyumn, S. Tai, T. Sawada, and M. Nunoshita, “Fiber optical instrument for temperature measurement,” IEEE J. Quantum Electron. 18, 676–679 (1982).
[CrossRef]

Tanguy, C.

C. Tanguy, “Temperature dependence of the refractive index of direct band gap semiconductors near the absorption threshold: application to GaAs,” J. Appl. Phys. 80, 4626–4633 (1996).
[CrossRef]

Vandamme, L. K. J.

P. J. L. Hen and L. K. J. Vandamme, “Empirical temperature dependence of the refractive index of semiconductors,” J. Appl. Phys. 77, 5476–5478 (1995).
[CrossRef]

Wang, C. X.

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
[CrossRef]

Xin, H. L.

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
[CrossRef]

Yamaguchi, M.

A. Himeno and M. Yamaguchi, “Recent progress on silica-based optical switches and free-space optical switches,” Proc. SPIE 2691, 72–81 (1996).
[CrossRef]

Yang, L.

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
[CrossRef]

Zhao, Y.

Y. Zhao, M. Rong, and Y. B. Liao, “Fiber optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J. 3, 400–403 (2003).
[CrossRef]

Zhou, C.

X. Sun, M. Li, C. Zhou, and Y. L. Li, “Linearity analysis of fiber-optic temperature sensor based on semiconductor optical absorption,” Acta. Opt. Sin. 28 (S2), 335–338 (2008).

Acta. Opt. Sin.

X. Sun, M. Li, C. Zhou, and Y. L. Li, “Linearity analysis of fiber-optic temperature sensor based on semiconductor optical absorption,” Acta. Opt. Sin. 28 (S2), 335–338 (2008).

Appl. Phys. Lett.

S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009).
[CrossRef]

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008).
[CrossRef]

Electron. Lett.

M. M. Salour, G. Schoner, M. Kull, and J. H. Bechtel, “Semiconductor platelet fiber optic temperature sensor,” Electron. Lett. 21,135–136 (1985).
[CrossRef]

IEEE J. Quantum Electron.

K. Kyumn, S. Tai, T. Sawada, and M. Nunoshita, “Fiber optical instrument for temperature measurement,” IEEE J. Quantum Electron. 18, 676–679 (1982).
[CrossRef]

IEEE Sens. J.

Y. Zhao, M. Rong, and Y. B. Liao, “Fiber optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J. 3, 400–403 (2003).
[CrossRef]

J. Appl. Phys.

C. Tanguy, “Temperature dependence of the refractive index of direct band gap semiconductors near the absorption threshold: application to GaAs,” J. Appl. Phys. 80, 4626–4633 (1996).
[CrossRef]

P. J. L. Hen and L. K. J. Vandamme, “Empirical temperature dependence of the refractive index of semiconductors,” J. Appl. Phys. 77, 5476–5478 (1995).
[CrossRef]

J. Mater Sci.

N. Cherroret, A. Chakravarty, and A. Kar, “Temperature-dependent refractive index of semiconductors,” J. Mater Sci. 43, 1795–1801 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004).
[CrossRef]

Phys. Rev. B

T. M. Donovan and W. E. Spicer, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970).
[CrossRef]

Proc. SPIE

M. F. Sultan and M. J. O’Rourke, “Temperature sensing by band gap optics absorption in semiconductors,” Proc. SPIE 2839, 191–202 (1996).
[CrossRef]

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[CrossRef]

A. Himeno and M. Yamaguchi, “Recent progress on silica-based optical switches and free-space optical switches,” Proc. SPIE 2691, 72–81 (1996).
[CrossRef]

Other

“Index of refraction,” http://www.cvilaser.com/Common/PDFs/Index_of_Refraction.pdf.

Wikipedia, “Fused quartz,” http://en.wikipedia.org/wiki/Fused_quartz.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structure of a semiconductor film coated fiber tip.

Fig. 2
Fig. 2

Reflectivity as a function of the Ge film thickness.

Fig. 3
Fig. 3

Reflectivity variations as a function of thickness.

Fig. 4
Fig. 4

Theoretical reflectivity of 495 nm germanium film with temperature.

Fig. 5
Fig. 5

Experimental system schema.

Fig. 6
Fig. 6

Testing results of reflective sensing probes with different film thickness.

Fig. 7
Fig. 7

Reflectivity difference change with different absorption variations.

Tables (2)

Tables Icon

Table 1 Temperature-Dependent Refractive Index Coefficient of Ge from Various References

Tables Icon

Table 2 Transmission of Ge Film with the Named Thickness

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ( r ) = ( r 1 + t 1 t 1 r 2 e 2 α d e i δ + r 1 t 1 t 1 r 2 2 e 4 α d e i 2 δ + r 1 2 t 1 t 1 r 2 3 e 6 α d e i 3 δ + ) A ( i ) ,
r = r 1 + t 1 t 1 r 2 e 2 α d e i δ ( 1 + r 1 r 2 e 2 α d e i δ + r 1 2 r 2 2 e 4 α d e i 2 δ + ) = r 1 + t 1 t 1 r 2 e 2 α d e i δ 1 r 1 r 2 e 2 α d e i δ .
r = r 1 + ( 1 r 1 2 ) r 2 e 2 α d e i δ 1 + r 1 r 2 e 2 α d e i δ = r 1 + r 2 e 2 α d e i δ 1 + r 1 r 2 e 2 α d e i δ .
I ( r ) = A ( r ) · A ( r ) * ,
R = r · r * = r 1 2 + r 2 2 e 4 α d + 2 r 1 r 2 e 2 α d cos δ 1 + r 1 2 r 2 2 e 4 α d + 2 r 1 r 2 e 2 α d cos δ .
P out ( T ) = η · R ( T ) · P 0 ,
T = 357.83 833.33 R ( T ) ,

Metrics