Abstract

In this paper, we describe a theoretical and experimental study of a wavelength-selective filter derived from hollow optical waveguides composed of Bragg reflectors with defect layers on a silicon substrate. The defect states of the transmission filter at wavelengths of 1519 and 1571nm were realized using one-dimensional photonic crystals (1D PCs) formed from a-Si and SiO2. The transmission spectra of the filter waveguides and the band structure of the defect 1D PCs were calculated using the two-dimensional finite-difference time-domain and transfer matrix methods, respectively. The device exhibited the narrow bandwidths of 0.5 and 1.1nm for wavelengths of 1571 and 1519nm, respectively.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88(1990).
    [CrossRef]
  2. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
    [CrossRef]
  3. M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
    [CrossRef]
  4. H. Y. Lee, H. Makino, T. Yao, and Akinori Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55μm,” Appl. Phys. Lett. 81, 4502–4504(2002).
    [CrossRef]
  5. S. S. Lo and C. C. Chen, “High finesse of optical filter by a set Fabry–Perot cavity,” J. Opt. Soc. Am. B 24, 1853–1856 (2007).
    [CrossRef]
  6. S. Tibuleac and R. Magnusson, “Diffractive narrow-band transmission filters based on guided-mode resonance effects in thin-film multilayers,” IEEE Photon. Technol. Lett. 9, 464–466 (1997).
    [CrossRef]
  7. M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
    [CrossRef]
  8. P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55μm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photon. Technol. Lett. 7, 783–785 (1995).
    [CrossRef]
  9. H. K. Chiu, F. L. Hsiao, C. H. Chan, and C. C. Chen, “Compact and low-loss bent hollow waveguides with distributed Bragg reflector,” Opt. Express 16, 15069–15073 (2008).
    [CrossRef] [PubMed]
  10. S. S. Lo and C. C. Chen, “1×2 Multimode interference couplers based on semiconductor hollow waveguides formed from omnidirectional reflectors,” Opt. Lett. 32, 1803–1805 (2007).
    [CrossRef] [PubMed]
  11. S. S. Lo, M. S. Wang, and C. C. Chen, “Semiconductor hollow optical waveguides formed by omni-directional reflectors,” Opt. Express 12, 6589–6593 (2004).
    [CrossRef] [PubMed]
  12. S. S. Lo, H. K. Chiu, and C. C. Chen, “Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent,” IEEE Photon. Technol. Lett. 17, 2592–2594 (2005).
    [CrossRef]
  13. S. S. Lo, C. C. Chen, S. C. Hsu, and C. Y. Liu, “Fabricating a hollow optical waveguide for optical communication applications,” J. Microelectromech. Syst. 15, 584–587 (2006).
    [CrossRef]
  14. B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18, 4790–4795 (2010).
    [CrossRef] [PubMed]
  15. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871(2004).
    [CrossRef] [PubMed]

2010 (1)

2008 (1)

2007 (2)

2006 (1)

S. S. Lo, C. C. Chen, S. C. Hsu, and C. Y. Liu, “Fabricating a hollow optical waveguide for optical communication applications,” J. Microelectromech. Syst. 15, 584–587 (2006).
[CrossRef]

2005 (1)

S. S. Lo, H. K. Chiu, and C. C. Chen, “Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent,” IEEE Photon. Technol. Lett. 17, 2592–2594 (2005).
[CrossRef]

2004 (3)

2002 (1)

H. Y. Lee, H. Makino, T. Yao, and Akinori Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55μm,” Appl. Phys. Lett. 81, 4502–4504(2002).
[CrossRef]

1998 (2)

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
[CrossRef]

M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

1997 (1)

S. Tibuleac and R. Magnusson, “Diffractive narrow-band transmission filters based on guided-mode resonance effects in thin-film multilayers,” IEEE Photon. Technol. Lett. 9, 464–466 (1997).
[CrossRef]

1995 (1)

P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55μm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photon. Technol. Lett. 7, 783–785 (1995).
[CrossRef]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88(1990).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Ahn, J. H.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
[CrossRef]

M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Alkeskjold, T.

Anawati, A.

Bjarklev, A.

Broeng, J.

Chan, C. H.

Chen, C. C.

Chiu, H. K.

H. K. Chiu, F. L. Hsiao, C. H. Chan, and C. C. Chen, “Compact and low-loss bent hollow waveguides with distributed Bragg reflector,” Opt. Express 16, 15069–15073 (2008).
[CrossRef] [PubMed]

S. S. Lo, H. K. Chiu, and C. C. Chen, “Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent,” IEEE Photon. Technol. Lett. 17, 2592–2594 (2005).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Han, S. G.

M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
[CrossRef]

Hawkins, A. R.

Hermann, D.

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Hsiao, F. L.

Hsu, S. C.

S. S. Lo, C. C. Chen, S. C. Hsu, and C. Y. Liu, “Fabricating a hollow optical waveguide for optical communication applications,” J. Microelectromech. Syst. 15, 584–587 (2006).
[CrossRef]

Jensen, P. I.

P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55μm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photon. Technol. Lett. 7, 783–785 (1995).
[CrossRef]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88(1990).
[CrossRef]

Kim, H. G.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
[CrossRef]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Lægsgaard, J.

Lee, H. J.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
[CrossRef]

M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Lee, H. Y.

H. Y. Lee, H. Makino, T. Yao, and Akinori Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55μm,” Appl. Phys. Lett. 81, 4502–4504(2002).
[CrossRef]

Lee, M. H.

M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
[CrossRef]

Li, J.

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Liu, C. Y.

S. S. Lo, C. C. Chen, S. C. Hsu, and C. Y. Liu, “Fabricating a hollow optical waveguide for optical communication applications,” J. Microelectromech. Syst. 15, 584–587 (2006).
[CrossRef]

Lo, S. S.

S. S. Lo and C. C. Chen, “High finesse of optical filter by a set Fabry–Perot cavity,” J. Opt. Soc. Am. B 24, 1853–1856 (2007).
[CrossRef]

S. S. Lo and C. C. Chen, “1×2 Multimode interference couplers based on semiconductor hollow waveguides formed from omnidirectional reflectors,” Opt. Lett. 32, 1803–1805 (2007).
[CrossRef] [PubMed]

S. S. Lo, C. C. Chen, S. C. Hsu, and C. Y. Liu, “Fabricating a hollow optical waveguide for optical communication applications,” J. Microelectromech. Syst. 15, 584–587 (2006).
[CrossRef]

S. S. Lo, H. K. Chiu, and C. C. Chen, “Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent,” IEEE Photon. Technol. Lett. 17, 2592–2594 (2005).
[CrossRef]

S. S. Lo, M. S. Wang, and C. C. Chen, “Semiconductor hollow optical waveguides formed by omni-directional reflectors,” Opt. Express 12, 6589–6593 (2004).
[CrossRef] [PubMed]

Magnusson, R.

S. Tibuleac and R. Magnusson, “Diffractive narrow-band transmission filters based on guided-mode resonance effects in thin-film multilayers,” IEEE Photon. Technol. Lett. 9, 464–466 (1997).
[CrossRef]

Makino, H.

H. Y. Lee, H. Makino, T. Yao, and Akinori Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55μm,” Appl. Phys. Lett. 81, 4502–4504(2002).
[CrossRef]

Measor, P.

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88(1990).
[CrossRef]

Oh, M. C.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
[CrossRef]

M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Phillips, B. S.

Schmidt, H.

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Sudbo, A.

P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55μm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photon. Technol. Lett. 7, 783–785 (1995).
[CrossRef]

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88(1990).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88(1990).
[CrossRef]

Tanaka, Akinori

H. Y. Lee, H. Makino, T. Yao, and Akinori Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55μm,” Appl. Phys. Lett. 81, 4502–4504(2002).
[CrossRef]

Tibuleac, S.

S. Tibuleac and R. Magnusson, “Diffractive narrow-band transmission filters based on guided-mode resonance effects in thin-film multilayers,” IEEE Photon. Technol. Lett. 9, 464–466 (1997).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

Wang, M. S.

Wu, S.-T.

Yao, T.

H. Y. Lee, H. Makino, T. Yao, and Akinori Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55μm,” Appl. Phys. Lett. 81, 4502–4504(2002).
[CrossRef]

Zhao, Y.

Appl. Phys. Lett. (3)

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543–2555(1998).
[CrossRef]

H. Y. Lee, H. Makino, T. Yao, and Akinori Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55μm,” Appl. Phys. Lett. 81, 4502–4504(2002).
[CrossRef]

M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Electron. Lett. (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88(1990).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).
[CrossRef]

S. Tibuleac and R. Magnusson, “Diffractive narrow-band transmission filters based on guided-mode resonance effects in thin-film multilayers,” IEEE Photon. Technol. Lett. 9, 464–466 (1997).
[CrossRef]

P. I. Jensen and A. Sudbo, “Bragg gratings for 1.55μm wavelength fabricated on semiconductor material by grating-period doubling using a phase mask,” IEEE Photon. Technol. Lett. 7, 783–785 (1995).
[CrossRef]

S. S. Lo, H. K. Chiu, and C. C. Chen, “Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent,” IEEE Photon. Technol. Lett. 17, 2592–2594 (2005).
[CrossRef]

J. Microelectromech. Syst. (1)

S. S. Lo, C. C. Chen, S. C. Hsu, and C. Y. Liu, “Fabricating a hollow optical waveguide for optical communication applications,” J. Microelectromech. Syst. 15, 584–587 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic representation of a hollow filter waveguide composed of 1D PCs ( n H , n L , and n D are the refractive indices of Si, SiO 2 , and Si, respectively). (b) Photonic band structure of a Bragg reflector mirror possessing a defect layer. (c) Transmission spectra (TE mode) of hollow filter waveguides for different waveguide lengths. The inset presents the transmission difference between the guided wavelength and the filtered wavelength for different device length. (d), (e) Photonic band structures of Bragg reflector mirrors possessing defect layers as the thin films are (d) 0.5% thicker and (e) 2.5% thinner than those in (b).

Fig. 2
Fig. 2

(a) Cross-sectional SEM image of a hollow filter waveguide composed of six Si / SiO 2 pairs possessing defect layers. (b) Far-field image of the output side of the hollow filter waveguide. (c) Core region of the hollow filter waveguide. (d) Top stacks of the waveguide. (e) Bottom stacks of the waveguide.

Fig. 3
Fig. 3

Transmission spectrum of the hollow filter waveguide, measured using the end-butt method.

Metrics