Abstract

The group velocity dispersion (GVD) coefficient of four different dyes in solution is measured as a function of wavelength and concentration using a white-light Michelson interferometer. We find that the wavelength dependence of the GVD can be considerably different at wavelengths above and below the absorption resonance in a dye. Above the absorption resonance, the dye molecules can make a strong, wavelength-dependent contribution to the GVD of the solution. Below the absorption resonance, the dye molecules tend to contribute negligibly to the GVD of the solution. We find that the contribution of the dye molecules to the GVD can be modeled quite accurately using a simple Lorentz model with parameters set using the measured linear absorption properties of the dye.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier, 2006), p. 25.
  2. A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: Multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).
    [CrossRef]
  3. B. Zysset, M. LaGasse, J. Fujimoto, and J. Kafka, “High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser,” Appl. Phys. Lett. 54, 496–498 (1989).
    [CrossRef]
  4. A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649–4656 (2001).
    [CrossRef]
  5. A. Yabushita, T. Fuji, and T. Kobayashi, “Nonlinear propagation of ultrashort pulses in cyanine dye solution investigated by SHG FROG,” Chem. Phys. Lett. 398, 495–499 (2004).
    [CrossRef]
  6. S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
    [CrossRef]
  7. K. Niu, S. Cong, and S.-Y. Lee, “Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: Application to Rhodamine 6G,” J. Chem. Phys. 131, 054311 (2009).
    [CrossRef] [PubMed]
  8. T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006).
    [CrossRef]
  9. M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
    [CrossRef]
  10. M. Sheeba, M. Rajesh, V. Nampoori, and P. Radhakrishnan, “Fabrication and characterization of dye mixture doped polymer optical fiber as a broad wavelength optical amplifier,” Appl. Opt. 47, 1907–1912 (2008).
    [CrossRef] [PubMed]
  11. K. Naganuma, K. Mogi, and H. Yamada, “Group-delay measurements using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990).
    [CrossRef] [PubMed]
  12. S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129(1996).
    [CrossRef]
  13. I. Cormack, F. Baumann, and D. Reid, “Measurements of group velocity dispersion using white light interferometry: A teaching laboratory experiment,” Am. J. Phys. 68, 1146–1150 (2000).
    [CrossRef]
  14. I. Thomann, L. Hollberg, S. Diddams, and R. Equall, “Chromium-doped forsterite: Dispersion measurement with white-light interferometry,” Appl. Opt. 42, 1661–1666 (2003).
    [CrossRef] [PubMed]
  15. T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, “Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry,” Rev. Sci. Instrum. 75, 2266–2270(2004).
    [CrossRef]
  16. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37, 5679–5686 (1998).
    [CrossRef]
  17. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry: Errata,” Appl. Opt. 38, 2499 (1999).
    [CrossRef]
  18. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988), p. 71.
  19. E. Hecht, Optics (Addison-Wesley, 1987), p. 61.
  20. D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), p. 403.
  21. M. Bass, T. F. Deutsch, and M. J. Weber, “Frequency- and time-dependent gain characteristics of laser- and flashlamp-pumped dye solution lasers,” Appl. Phys. Lett. 13, 120–124(1968).
    [CrossRef]
  22. C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
    [CrossRef]
  23. T. Urisu and K. Kajiyama, “Concentration dependence of the gain spectrum in methanol solutions of Rhodamine 6G,” J. Appl. Phys. 47, 3559–3562 (1976).
    [CrossRef]
  24. R. Bhatnagar, N. Singh, R. Chaube, and H. S. Vora, “Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability,” Rev. Sci. Instrum. 75, 5126–5130 (2004).
    [CrossRef]
  25. R. Frontiera, S. Shim, and R. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129, 064507 (2008).
    [CrossRef] [PubMed]
  26. R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
    [CrossRef] [PubMed]
  27. F. Rossi, P. Matteini, I. Bruno, P. Nesi, and R. Pini, “Monitoring thermally-induced phase transitions in porcine cornea with the use of fluorescence micro-imaging analysis,” Opt. Express 15, 11178 (2007).
    [CrossRef] [PubMed]
  28. M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K(2009).
    [CrossRef]
  29. F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
    [CrossRef]
  30. K. Kato, “Ar-ion-laser-pumped infrared dye laser at 875–1084nm,” Opt. Lett. 9, 544–545 (1984).
    [CrossRef] [PubMed]
  31. T. S. Stark, M. D. Dawson, and A. L. Smirl, “Synchronous and hybrid mode-locking of a Styryl 13 dye laser,” Opt. Commun. 68, 361–363 (1988).
    [CrossRef]
  32. L. A. Bloomfield, “Excimer-laser pumped infrared dye laser at 907–1023nm,” Opt. Commun. 70, 223–224 (1989).
    [CrossRef]

2009 (5)

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

K. Niu, S. Cong, and S.-Y. Lee, “Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: Application to Rhodamine 6G,” J. Chem. Phys. 131, 054311 (2009).
[CrossRef] [PubMed]

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K(2009).
[CrossRef]

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

2008 (2)

R. Frontiera, S. Shim, and R. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129, 064507 (2008).
[CrossRef] [PubMed]

M. Sheeba, M. Rajesh, V. Nampoori, and P. Radhakrishnan, “Fabrication and characterization of dye mixture doped polymer optical fiber as a broad wavelength optical amplifier,” Appl. Opt. 47, 1907–1912 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006).
[CrossRef]

2005 (1)

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

2004 (3)

A. Yabushita, T. Fuji, and T. Kobayashi, “Nonlinear propagation of ultrashort pulses in cyanine dye solution investigated by SHG FROG,” Chem. Phys. Lett. 398, 495–499 (2004).
[CrossRef]

T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, “Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry,” Rev. Sci. Instrum. 75, 2266–2270(2004).
[CrossRef]

R. Bhatnagar, N. Singh, R. Chaube, and H. S. Vora, “Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability,” Rev. Sci. Instrum. 75, 5126–5130 (2004).
[CrossRef]

2003 (1)

2001 (1)

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649–4656 (2001).
[CrossRef]

2000 (1)

I. Cormack, F. Baumann, and D. Reid, “Measurements of group velocity dispersion using white light interferometry: A teaching laboratory experiment,” Am. J. Phys. 68, 1146–1150 (2000).
[CrossRef]

1999 (2)

A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry: Errata,” Appl. Opt. 38, 2499 (1999).
[CrossRef]

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: Multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).
[CrossRef]

1998 (1)

1996 (1)

1990 (1)

1989 (2)

B. Zysset, M. LaGasse, J. Fujimoto, and J. Kafka, “High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser,” Appl. Phys. Lett. 54, 496–498 (1989).
[CrossRef]

L. A. Bloomfield, “Excimer-laser pumped infrared dye laser at 907–1023nm,” Opt. Commun. 70, 223–224 (1989).
[CrossRef]

1988 (1)

T. S. Stark, M. D. Dawson, and A. L. Smirl, “Synchronous and hybrid mode-locking of a Styryl 13 dye laser,” Opt. Commun. 68, 361–363 (1988).
[CrossRef]

1984 (1)

1976 (1)

T. Urisu and K. Kajiyama, “Concentration dependence of the gain spectrum in methanol solutions of Rhodamine 6G,” J. Appl. Phys. 47, 3559–3562 (1976).
[CrossRef]

1970 (1)

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

1968 (1)

M. Bass, T. F. Deutsch, and M. J. Weber, “Frequency- and time-dependent gain characteristics of laser- and flashlamp-pumped dye solution lasers,” Appl. Phys. Lett. 13, 120–124(1968).
[CrossRef]

Ariu, M.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Bass, M.

M. Bass, T. F. Deutsch, and M. J. Weber, “Frequency- and time-dependent gain characteristics of laser- and flashlamp-pumped dye solution lasers,” Appl. Phys. Lett. 13, 120–124(1968).
[CrossRef]

Baumann, F.

I. Cormack, F. Baumann, and D. Reid, “Measurements of group velocity dispersion using white light interferometry: A teaching laboratory experiment,” Am. J. Phys. 68, 1146–1150 (2000).
[CrossRef]

Berger, M.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Bhatnagar, R.

R. Bhatnagar, N. Singh, R. Chaube, and H. S. Vora, “Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability,” Rev. Sci. Instrum. 75, 5126–5130 (2004).
[CrossRef]

Bloomfield, L. A.

L. A. Bloomfield, “Excimer-laser pumped infrared dye laser at 907–1023nm,” Opt. Commun. 70, 223–224 (1989).
[CrossRef]

Bradley, D.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Bruno, I.

Chaube, R.

R. Bhatnagar, N. Singh, R. Chaube, and H. S. Vora, “Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability,” Rev. Sci. Instrum. 75, 5126–5130 (2004).
[CrossRef]

Clement, T. S.

Cong, S.

K. Niu, S. Cong, and S.-Y. Lee, “Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: Application to Rhodamine 6G,” J. Chem. Phys. 131, 054311 (2009).
[CrossRef] [PubMed]

Cormack, I.

I. Cormack, F. Baumann, and D. Reid, “Measurements of group velocity dispersion using white light interferometry: A teaching laboratory experiment,” Am. J. Phys. 68, 1146–1150 (2000).
[CrossRef]

Dawson, M. D.

T. S. Stark, M. D. Dawson, and A. L. Smirl, “Synchronous and hybrid mode-locking of a Styryl 13 dye laser,” Opt. Commun. 68, 361–363 (1988).
[CrossRef]

Deutsch, T. F.

M. Bass, T. F. Deutsch, and M. J. Weber, “Frequency- and time-dependent gain characteristics of laser- and flashlamp-pumped dye solution lasers,” Appl. Phys. Lett. 13, 120–124(1968).
[CrossRef]

Diddams, S.

Diddams, S. A.

Diels, J.-C.

S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129(1996).
[CrossRef]

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier, 2006), p. 25.

Dienes, A.

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Du, S.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988), p. 71.

Equall, R.

Feng, B.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

Ferro, A. Albrecht

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649–4656 (2001).
[CrossRef]

Frontiera, R.

R. Frontiera, S. Shim, and R. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129, 064507 (2008).
[CrossRef] [PubMed]

Fuji, T.

A. Yabushita, T. Fuji, and T. Kobayashi, “Nonlinear propagation of ultrashort pulses in cyanine dye solution investigated by SHG FROG,” Chem. Phys. Lett. 398, 495–499 (2004).
[CrossRef]

Fujimoto, J.

B. Zysset, M. LaGasse, J. Fujimoto, and J. Kafka, “High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser,” Appl. Phys. Lett. 54, 496–498 (1989).
[CrossRef]

Fukuda, Y.

T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006).
[CrossRef]

Fukui, Y.

T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006).
[CrossRef]

Furue, S.

T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006).
[CrossRef]

Goutayer, M.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Griffiths, D. J.

D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), p. 403.

Guillermet, S.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Han, X.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 1987), p. 61.

Hinkle, G. H.

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

Hollberg, L.

Hong, K.-H.

T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, “Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry,” Rev. Sci. Instrum. 75, 2266–2270(2004).
[CrossRef]

Huang, J.

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

Hybl, J. D.

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649–4656 (2001).
[CrossRef]

Imran, T.

T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, “Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry,” Rev. Sci. Instrum. 75, 2266–2270(2004).
[CrossRef]

Jonas, D. M.

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649–4656 (2001).
[CrossRef]

Josserand, V.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Kafka, J.

B. Zysset, M. LaGasse, J. Fujimoto, and J. Kafka, “High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser,” Appl. Phys. Lett. 54, 496–498 (1989).
[CrossRef]

Kajiyama, K.

T. Urisu and K. Kajiyama, “Concentration dependence of the gain spectrum in methanol solutions of Rhodamine 6G,” J. Appl. Phys. 47, 3559–3562 (1976).
[CrossRef]

Kato, K.

Kobayashi, T.

A. Yabushita, T. Fuji, and T. Kobayashi, “Nonlinear propagation of ultrashort pulses in cyanine dye solution investigated by SHG FROG,” Chem. Phys. Lett. 398, 495–499 (2004).
[CrossRef]

Kohmoto, T.

T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006).
[CrossRef]

LaGasse, M.

B. Zysset, M. LaGasse, J. Fujimoto, and J. Kafka, “High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser,” Appl. Phys. Lett. 54, 496–498 (1989).
[CrossRef]

Lee, S.-Y.

K. Niu, S. Cong, and S.-Y. Lee, “Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: Application to Rhodamine 6G,” J. Chem. Phys. 131, 054311 (2009).
[CrossRef] [PubMed]

Li, Q.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

Marinelli, C.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Martin, E. W.

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

Mathies, R.

R. Frontiera, S. Shim, and R. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129, 064507 (2008).
[CrossRef] [PubMed]

Matteini, P.

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988), p. 71.

Miwa, M.

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K(2009).
[CrossRef]

Mogi, K.

Morgan, C.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Naganuma, K.

Nakayama, K.

T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006).
[CrossRef]

Nam, C. H.

T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, “Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry,” Rev. Sci. Instrum. 75, 2266–2270(2004).
[CrossRef]

Nampoori, V.

Navarro, F. P.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Nesi, P.

Niu, K.

K. Niu, S. Cong, and S.-Y. Lee, “Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: Application to Rhodamine 6G,” J. Chem. Phys. 131, 054311 (2009).
[CrossRef] [PubMed]

Penty, R.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Pini, R.

Povoski, S. P.

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

Radhakrishnan, P.

Rajesh, M.

Ramon, M.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Reid, D.

I. Cormack, F. Baumann, and D. Reid, “Measurements of group velocity dispersion using white light interferometry: A teaching laboratory experiment,” Am. J. Phys. 68, 1146–1150 (2000).
[CrossRef]

Reilly, M.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Rizo, P.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Rossi, F.

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier, 2006), p. 25.

Shank, C. V.

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Sheeba, M.

Shi, Y.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

Shikayama, T.

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K(2009).
[CrossRef]

Shim, S.

R. Frontiera, S. Shim, and R. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129, 064507 (2008).
[CrossRef] [PubMed]

Silfvast, W. T.

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Singh, N.

R. Bhatnagar, N. Singh, R. Chaube, and H. S. Vora, “Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability,” Rev. Sci. Instrum. 75, 5126–5130 (2004).
[CrossRef]

Smirl, A. L.

T. S. Stark, M. D. Dawson, and A. L. Smirl, “Synchronous and hybrid mode-locking of a Styryl 13 dye laser,” Opt. Commun. 68, 361–363 (1988).
[CrossRef]

Stark, T. S.

T. S. Stark, M. D. Dawson, and A. L. Smirl, “Synchronous and hybrid mode-locking of a Styryl 13 dye laser,” Opt. Commun. 68, 361–363 (1988).
[CrossRef]

Sun, D.

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

Texier, I.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Thomann, I.

Urisu, T.

T. Urisu and K. Kajiyama, “Concentration dependence of the gain spectrum in methanol solutions of Rhodamine 6G,” J. Appl. Phys. 47, 3559–3562 (1976).
[CrossRef]

Van Engen, A. G.

Vinet, F.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Vora, H. S.

R. Bhatnagar, N. Singh, R. Chaube, and H. S. Vora, “Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability,” Rev. Sci. Instrum. 75, 5126–5130 (2004).
[CrossRef]

Weber, M. J.

M. Bass, T. F. Deutsch, and M. J. Weber, “Frequency- and time-dependent gain characteristics of laser- and flashlamp-pumped dye solution lasers,” Appl. Phys. Lett. 13, 120–124(1968).
[CrossRef]

Weng, Y.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

White, I.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Xia, R.

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

Xu, J. S.

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

Xu, R. X.

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

Yabushita, A.

A. Yabushita, T. Fuji, and T. Kobayashi, “Nonlinear propagation of ultrashort pulses in cyanine dye solution investigated by SHG FROG,” Chem. Phys. Lett. 398, 495–499 (2004).
[CrossRef]

Yamada, H.

Yu, T. J.

T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, “Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry,” Rev. Sci. Instrum. 75, 2266–2270(2004).
[CrossRef]

Zhang, D.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

Zhang, J.-Y.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

Zozulya, A. A.

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: Multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).
[CrossRef]

Zysset, B.

B. Zysset, M. LaGasse, J. Fujimoto, and J. Kafka, “High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser,” Appl. Phys. Lett. 54, 496–498 (1989).
[CrossRef]

Am. J. Phys. (1)

I. Cormack, F. Baumann, and D. Reid, “Measurements of group velocity dispersion using white light interferometry: A teaching laboratory experiment,” Am. J. Phys. 68, 1146–1150 (2000).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

B. Zysset, M. LaGasse, J. Fujimoto, and J. Kafka, “High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser,” Appl. Phys. Lett. 54, 496–498 (1989).
[CrossRef]

M. Bass, T. F. Deutsch, and M. J. Weber, “Frequency- and time-dependent gain characteristics of laser- and flashlamp-pumped dye solution lasers,” Appl. Phys. Lett. 13, 120–124(1968).
[CrossRef]

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Chem. Phys. Lett. (1)

A. Yabushita, T. Fuji, and T. Kobayashi, “Nonlinear propagation of ultrashort pulses in cyanine dye solution investigated by SHG FROG,” Chem. Phys. Lett. 398, 495–499 (2004).
[CrossRef]

J Biomed. Opt. (1)

R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

T. Urisu and K. Kajiyama, “Concentration dependence of the gain spectrum in methanol solutions of Rhodamine 6G,” J. Appl. Phys. 47, 3559–3562 (1976).
[CrossRef]

M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005).
[CrossRef]

J. Chem. Phys. (3)

K. Niu, S. Cong, and S.-Y. Lee, “Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: Application to Rhodamine 6G,” J. Chem. Phys. 131, 054311 (2009).
[CrossRef] [PubMed]

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649–4656 (2001).
[CrossRef]

R. Frontiera, S. Shim, and R. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129, 064507 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009).
[CrossRef]

T. S. Stark, M. D. Dawson, and A. L. Smirl, “Synchronous and hybrid mode-locking of a Styryl 13 dye laser,” Opt. Commun. 68, 361–363 (1988).
[CrossRef]

L. A. Bloomfield, “Excimer-laser pumped infrared dye laser at 907–1023nm,” Opt. Commun. 70, 223–224 (1989).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E (1)

T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: Multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).
[CrossRef]

Proc. SPIE (2)

M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K(2009).
[CrossRef]

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009).
[CrossRef]

Rev. Sci. Instrum. (2)

R. Bhatnagar, N. Singh, R. Chaube, and H. S. Vora, “Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability,” Rev. Sci. Instrum. 75, 5126–5130 (2004).
[CrossRef]

T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, “Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry,” Rev. Sci. Instrum. 75, 2266–2270(2004).
[CrossRef]

Other (4)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier, 2006), p. 25.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988), p. 71.

E. Hecht, Optics (Addison-Wesley, 1987), p. 61.

D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), p. 403.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of a white-light Michelson inter ferometer for measuring dispersion coefficients of materials. L = lens ; M, M1, M 2 = mirror ; BS = beam splitter ; PD = photodiode detector ; WLD = white-light detector ; C = glass cuvette . The solid line represents white light from the halogen bulb, and the dashed line represents light from the He-Ne laser used for calibration of the time delay.

Fig. 2
Fig. 2

Measured values of k 0 of Rhodamine 6 G in methanol as a function of concentration at 600 nm (solid squares) and 675 nm (open circles).

Fig. 3
Fig. 3

Measured (dots) and simulated (solid line) linear absorption coefficient for 6.9 × 10 5 mol / L Rhodamine 6 G in methanol. Inset, simulated index of refraction for 6.9 × 10 5 mol / L Rhodamine 6 G in methanol.

Fig. 4
Fig. 4

(a) Difference between k 0 measured in solutions of Rhodamine 6 G and k 0 measured in the solvent as a function of wavelength for three different concentrations. (b) Simulated values of k 0 for three concentrations of Rhodamine 6 G in methanol, as a function of wavelength.

Fig. 5
Fig. 5

Measured (dots) and simulated (solid line) linear absorption coefficient for 6.1 × 10 5 mol / L new indocyanine green in methanol. Inset, simulated index of refraction for 6.1 × 10 5 mol / L new indocyanine green in methanol.

Fig. 6
Fig. 6

(a) Difference between k 0 measured for three concentrations of new indocyanine green in methanol and k 0 measured for neat methanol as a function of wavelength below the absorption resonance in the dye. (b) Simulated values of k 0 for three concentrations of new indocyanine green, as a function of wavelength, below the absorption resonance in the dye.

Fig. 7
Fig. 7

(a) Difference between k 0 measured for three concentrations of new indocyanine green in methanol and k 0 measured for neat methanol as a function of wavelength above the strongest absorption resonance in the dye. (b) Simulated values of k 0 for three concentrations of new indocyanine green as a function of wavelength above the strongest absorption resonance in the dye.

Fig. 8
Fig. 8

Measured (dots) and simulated (solid line) linear absorption coefficient for 0.064 g / L IRA 980B in methanol. Inset, simulated index of refraction for 0.064 g / L IRA 980B in methanol.

Fig. 9
Fig. 9

(a) Difference between k 0 measured for three concentrations of IRA 980B in methanol and k 0 measured for neat methanol as a function of wavelength below the absorption resonance in the dye. (b) Simulated values of k 0 for three concentrations of IRA 980B, as a function of wavelength, below the absorption resonance in the dye.

Fig. 10
Fig. 10

(a) Difference between k 0 measured for three concentrations of IRA 980B in methanol and k 0 measured for neat methanol as a function of wavelength above the strongest absorption resonance in the dye. (b) Simulated values of k 0 for three concentrations of IRA 980B as a function of wavelength above the strongest absorption resonance in the dye.

Fig. 11
Fig. 11

Measured (dots) and simulated (solid line) linear absorption coefficient for 9.0 × 10 5 mol / L of Styryl 13 in methanol.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( ω ) = | E 1 ( ω ) | 2 exp [ i k ( ω ) d ] .
Φ ( Ω ) k 0 d + k 0 Ω d + k 0 2 Ω 2 d + k 0 6 Ω 3 d + ... ,
k 0 = d 2 k d ω 2 | ω 0 ,
k 0 = d 3 k d ω 3 | ω 0 .
ϵ ( ω ) = ϵ 0 { 1 + N q 2 m ϵ 0 j f j ω j 2 ω 2 i γ j ω } ,
n ( ω ) = c Re { μ 0 ϵ ( ω ) } .
α ( ω ) = 2 Im { ω μ 0 ϵ ( ω ) } .
k 0 = 2 c d n d ω | ω 0 + ω 0 c d 2 n d ω 2 | ω 0 .

Metrics