Abstract

We present a detailed design concept and optical performance evaluation of stationary dielectric asymmetric compound parabolic concentrators (DiACPCs) using ray-tracing methods. Three DiACPC designs, DiACPC-55, DiACPC-66, and DiACPC-77, of acceptance half-angles (0° and 55°), (0° and 66°), and (0° and 77°), respectively, are designed in order to optimize the concentrator for building façade photovoltaic applications in northern latitudes (>55°N). The dielectric concentrator profiles have been realized via truncation of the complete compound parabolic concentrator profiles to achieve a geometric concentration ratio of 2.82. Ray-tracing simulation results show that all rays entering the designed concentrators within the acceptance half-angle range can be collected without escaping from the parabolic sides and aperture. The maximum optical efficiency of the designed concentrators is found to be 83%, which tends to decrease with the increase in incidence angle. The intensity is found to be distributed at the receiver (solar cell) area in an inhomogeneous pattern for a wide range of incident angles of direct solar irradiance with high-intensity peaks at certain points of the receiver. However, peaks become more intense for the irradiation incident close to the extreme acceptance angles, shifting the peaks to the edge of the receiver. Energy flux distribution at the receiver for diffuse radiation is found to be homogeneous within ±12% with an average intensity of 520W/m2.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Luque, G. Sala, and I. Luque-Heredia, “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt. 14, 413–428 (2006).
    [CrossRef]
  2. J. Byrne, S. Letendre, C. Govindarajalu, Y.-D. Wang, and R. Nigro, “Evaluating the economics of photovoltaics in a demand-side management role,” Energy Policy 24, 177–185(1996).
    [CrossRef]
  3. A. Masini and P. Frankl, “Forecasting the diffusion of photovoltaic systems in southern Europe: a learning curve approach,” Technol. Forecast. Soc. Change 70, 39–65 (2003).
    [CrossRef]
  4. R. Winston, “Dielectric compound parabolic concentrator,” Appl. Opt. 15, 291–292 (1976).
    [CrossRef] [PubMed]
  5. A. Zacharopoulos, P. C. Eames, D. McLarnon, and B. Norton, “Linear dielectric non-imaging concentrating covers for PV integrated building facades,” Sol. Energ. 68, 439–452 (2000).
    [CrossRef]
  6. A. Rabl, “Comparison of solar concentrators,” Sol. Energ. 18, 93–111 (1976).
    [CrossRef]
  7. T. K. Mallick, P. C. Eames, T. J. Hyde, and B. Norton, “The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK,” Sol. Energ. 77, 319–327 (2004).
    [CrossRef]
  8. T. K. Mallick and P. C. Eames, “Design and fabrication of low concentrating second generation PRIDE concentrator,” Sol. Energ. Mater. Sol. Cells 91, 597–608 (2007).
    [CrossRef]
  9. J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Sol. Energ. 80, 1199–1212 (2006).
    [CrossRef]
  10. W. R. McIntire, “Factored approximations for biaxial incident angle modifiers,” Sol. Energ. 29, 315–322 (1982).
    [CrossRef]
  11. R. Leutz and H. P. Annen, “Reverse ray-tracing model for the performance evaluation of stationary solar concentrators,” Sol. Energ. 81, 761–767 (2007).
    [CrossRef]
  12. M. C. Morilla, J. M. Fernandez, I. Anton, D. Pachon, and G. Sala, “Buried contact cell design optimisation for concentration system,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 1149–1151.
  13. L. G. Rainhart and W. P. Schimmel, Jr., “Effect of outdoor aging on acrylic sheet,” Sol. Energ. 17, 259–264 (1975).
    [CrossRef]
  14. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, 1991).
  15. S. Goma, K. Yoshioka, and T. Saitoh, “Effect of concentration distribution on cell performance for low-concentrators with a three-dimensional lens,” Sol. Energ. Mater. Sol. Cells 47, 339–344 (1997).
    [CrossRef]
  16. Z. H. Lu, Q. Song, S. Q. Li, Q. Yao, and A. Othman, “The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell,” in Proceedings of ISES World Congress 2007, Vol.  I–Vol.  V (Springer/Tsinghua University Press, 2009), pp. 1445–1448.
  17. Meteorology data, PVsyst, http://www.pvsyst.com/ (University of Geneva, Switzerland, 2011).
  18. D. E. Prapas, B. Norton, and S. D. Probert, “Optics of parabolic-trough, solar-energy collectors, possessing small concentration ratios,” Sol. Energ. 39, 541–550 (1987).
    [CrossRef]

2007 (2)

T. K. Mallick and P. C. Eames, “Design and fabrication of low concentrating second generation PRIDE concentrator,” Sol. Energ. Mater. Sol. Cells 91, 597–608 (2007).
[CrossRef]

R. Leutz and H. P. Annen, “Reverse ray-tracing model for the performance evaluation of stationary solar concentrators,” Sol. Energ. 81, 761–767 (2007).
[CrossRef]

2006 (2)

J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Sol. Energ. 80, 1199–1212 (2006).
[CrossRef]

A. Luque, G. Sala, and I. Luque-Heredia, “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt. 14, 413–428 (2006).
[CrossRef]

2004 (1)

T. K. Mallick, P. C. Eames, T. J. Hyde, and B. Norton, “The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK,” Sol. Energ. 77, 319–327 (2004).
[CrossRef]

2003 (1)

A. Masini and P. Frankl, “Forecasting the diffusion of photovoltaic systems in southern Europe: a learning curve approach,” Technol. Forecast. Soc. Change 70, 39–65 (2003).
[CrossRef]

2000 (1)

A. Zacharopoulos, P. C. Eames, D. McLarnon, and B. Norton, “Linear dielectric non-imaging concentrating covers for PV integrated building facades,” Sol. Energ. 68, 439–452 (2000).
[CrossRef]

1997 (1)

S. Goma, K. Yoshioka, and T. Saitoh, “Effect of concentration distribution on cell performance for low-concentrators with a three-dimensional lens,” Sol. Energ. Mater. Sol. Cells 47, 339–344 (1997).
[CrossRef]

1996 (1)

J. Byrne, S. Letendre, C. Govindarajalu, Y.-D. Wang, and R. Nigro, “Evaluating the economics of photovoltaics in a demand-side management role,” Energy Policy 24, 177–185(1996).
[CrossRef]

1987 (1)

D. E. Prapas, B. Norton, and S. D. Probert, “Optics of parabolic-trough, solar-energy collectors, possessing small concentration ratios,” Sol. Energ. 39, 541–550 (1987).
[CrossRef]

1982 (1)

W. R. McIntire, “Factored approximations for biaxial incident angle modifiers,” Sol. Energ. 29, 315–322 (1982).
[CrossRef]

1976 (2)

A. Rabl, “Comparison of solar concentrators,” Sol. Energ. 18, 93–111 (1976).
[CrossRef]

R. Winston, “Dielectric compound parabolic concentrator,” Appl. Opt. 15, 291–292 (1976).
[CrossRef] [PubMed]

1975 (1)

L. G. Rainhart and W. P. Schimmel, Jr., “Effect of outdoor aging on acrylic sheet,” Sol. Energ. 17, 259–264 (1975).
[CrossRef]

Annen, H. P.

R. Leutz and H. P. Annen, “Reverse ray-tracing model for the performance evaluation of stationary solar concentrators,” Sol. Energ. 81, 761–767 (2007).
[CrossRef]

Anton, I.

M. C. Morilla, J. M. Fernandez, I. Anton, D. Pachon, and G. Sala, “Buried contact cell design optimisation for concentration system,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 1149–1151.

Beckman, W. A.

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, 1991).

Brogren, M.

J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Sol. Energ. 80, 1199–1212 (2006).
[CrossRef]

Byrne, J.

J. Byrne, S. Letendre, C. Govindarajalu, Y.-D. Wang, and R. Nigro, “Evaluating the economics of photovoltaics in a demand-side management role,” Energy Policy 24, 177–185(1996).
[CrossRef]

Duffie, J. A.

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, 1991).

Eames, P. C.

T. K. Mallick and P. C. Eames, “Design and fabrication of low concentrating second generation PRIDE concentrator,” Sol. Energ. Mater. Sol. Cells 91, 597–608 (2007).
[CrossRef]

T. K. Mallick, P. C. Eames, T. J. Hyde, and B. Norton, “The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK,” Sol. Energ. 77, 319–327 (2004).
[CrossRef]

A. Zacharopoulos, P. C. Eames, D. McLarnon, and B. Norton, “Linear dielectric non-imaging concentrating covers for PV integrated building facades,” Sol. Energ. 68, 439–452 (2000).
[CrossRef]

Fernandez, J. M.

M. C. Morilla, J. M. Fernandez, I. Anton, D. Pachon, and G. Sala, “Buried contact cell design optimisation for concentration system,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 1149–1151.

Frankl, P.

A. Masini and P. Frankl, “Forecasting the diffusion of photovoltaic systems in southern Europe: a learning curve approach,” Technol. Forecast. Soc. Change 70, 39–65 (2003).
[CrossRef]

Goma, S.

S. Goma, K. Yoshioka, and T. Saitoh, “Effect of concentration distribution on cell performance for low-concentrators with a three-dimensional lens,” Sol. Energ. Mater. Sol. Cells 47, 339–344 (1997).
[CrossRef]

Govindarajalu, C.

J. Byrne, S. Letendre, C. Govindarajalu, Y.-D. Wang, and R. Nigro, “Evaluating the economics of photovoltaics in a demand-side management role,” Energy Policy 24, 177–185(1996).
[CrossRef]

Helgesson, A.

J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Sol. Energ. 80, 1199–1212 (2006).
[CrossRef]

Hyde, T. J.

T. K. Mallick, P. C. Eames, T. J. Hyde, and B. Norton, “The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK,” Sol. Energ. 77, 319–327 (2004).
[CrossRef]

Karlsson, B.

J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Sol. Energ. 80, 1199–1212 (2006).
[CrossRef]

Letendre, S.

J. Byrne, S. Letendre, C. Govindarajalu, Y.-D. Wang, and R. Nigro, “Evaluating the economics of photovoltaics in a demand-side management role,” Energy Policy 24, 177–185(1996).
[CrossRef]

Leutz, R.

R. Leutz and H. P. Annen, “Reverse ray-tracing model for the performance evaluation of stationary solar concentrators,” Sol. Energ. 81, 761–767 (2007).
[CrossRef]

Li, S. Q.

Z. H. Lu, Q. Song, S. Q. Li, Q. Yao, and A. Othman, “The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell,” in Proceedings of ISES World Congress 2007, Vol.  I–Vol.  V (Springer/Tsinghua University Press, 2009), pp. 1445–1448.

Lu, Z. H.

Z. H. Lu, Q. Song, S. Q. Li, Q. Yao, and A. Othman, “The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell,” in Proceedings of ISES World Congress 2007, Vol.  I–Vol.  V (Springer/Tsinghua University Press, 2009), pp. 1445–1448.

Luque, A.

A. Luque, G. Sala, and I. Luque-Heredia, “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt. 14, 413–428 (2006).
[CrossRef]

Luque-Heredia, I.

A. Luque, G. Sala, and I. Luque-Heredia, “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt. 14, 413–428 (2006).
[CrossRef]

Mallick, T. K.

T. K. Mallick and P. C. Eames, “Design and fabrication of low concentrating second generation PRIDE concentrator,” Sol. Energ. Mater. Sol. Cells 91, 597–608 (2007).
[CrossRef]

T. K. Mallick, P. C. Eames, T. J. Hyde, and B. Norton, “The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK,” Sol. Energ. 77, 319–327 (2004).
[CrossRef]

Masini, A.

A. Masini and P. Frankl, “Forecasting the diffusion of photovoltaic systems in southern Europe: a learning curve approach,” Technol. Forecast. Soc. Change 70, 39–65 (2003).
[CrossRef]

McIntire, W. R.

W. R. McIntire, “Factored approximations for biaxial incident angle modifiers,” Sol. Energ. 29, 315–322 (1982).
[CrossRef]

McLarnon, D.

A. Zacharopoulos, P. C. Eames, D. McLarnon, and B. Norton, “Linear dielectric non-imaging concentrating covers for PV integrated building facades,” Sol. Energ. 68, 439–452 (2000).
[CrossRef]

Morilla, M. C.

M. C. Morilla, J. M. Fernandez, I. Anton, D. Pachon, and G. Sala, “Buried contact cell design optimisation for concentration system,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 1149–1151.

Nigro, R.

J. Byrne, S. Letendre, C. Govindarajalu, Y.-D. Wang, and R. Nigro, “Evaluating the economics of photovoltaics in a demand-side management role,” Energy Policy 24, 177–185(1996).
[CrossRef]

Nilsson, J.

J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Sol. Energ. 80, 1199–1212 (2006).
[CrossRef]

Norton, B.

T. K. Mallick, P. C. Eames, T. J. Hyde, and B. Norton, “The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK,” Sol. Energ. 77, 319–327 (2004).
[CrossRef]

A. Zacharopoulos, P. C. Eames, D. McLarnon, and B. Norton, “Linear dielectric non-imaging concentrating covers for PV integrated building facades,” Sol. Energ. 68, 439–452 (2000).
[CrossRef]

D. E. Prapas, B. Norton, and S. D. Probert, “Optics of parabolic-trough, solar-energy collectors, possessing small concentration ratios,” Sol. Energ. 39, 541–550 (1987).
[CrossRef]

Othman, A.

Z. H. Lu, Q. Song, S. Q. Li, Q. Yao, and A. Othman, “The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell,” in Proceedings of ISES World Congress 2007, Vol.  I–Vol.  V (Springer/Tsinghua University Press, 2009), pp. 1445–1448.

Pachon, D.

M. C. Morilla, J. M. Fernandez, I. Anton, D. Pachon, and G. Sala, “Buried contact cell design optimisation for concentration system,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 1149–1151.

Prapas, D. E.

D. E. Prapas, B. Norton, and S. D. Probert, “Optics of parabolic-trough, solar-energy collectors, possessing small concentration ratios,” Sol. Energ. 39, 541–550 (1987).
[CrossRef]

Probert, S. D.

D. E. Prapas, B. Norton, and S. D. Probert, “Optics of parabolic-trough, solar-energy collectors, possessing small concentration ratios,” Sol. Energ. 39, 541–550 (1987).
[CrossRef]

Rabl, A.

A. Rabl, “Comparison of solar concentrators,” Sol. Energ. 18, 93–111 (1976).
[CrossRef]

Rainhart, L. G.

L. G. Rainhart and W. P. Schimmel, Jr., “Effect of outdoor aging on acrylic sheet,” Sol. Energ. 17, 259–264 (1975).
[CrossRef]

Roos, A.

J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Sol. Energ. 80, 1199–1212 (2006).
[CrossRef]

Saitoh, T.

S. Goma, K. Yoshioka, and T. Saitoh, “Effect of concentration distribution on cell performance for low-concentrators with a three-dimensional lens,” Sol. Energ. Mater. Sol. Cells 47, 339–344 (1997).
[CrossRef]

Sala, G.

A. Luque, G. Sala, and I. Luque-Heredia, “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt. 14, 413–428 (2006).
[CrossRef]

M. C. Morilla, J. M. Fernandez, I. Anton, D. Pachon, and G. Sala, “Buried contact cell design optimisation for concentration system,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 1149–1151.

Schimmel, W. P.

L. G. Rainhart and W. P. Schimmel, Jr., “Effect of outdoor aging on acrylic sheet,” Sol. Energ. 17, 259–264 (1975).
[CrossRef]

Song, Q.

Z. H. Lu, Q. Song, S. Q. Li, Q. Yao, and A. Othman, “The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell,” in Proceedings of ISES World Congress 2007, Vol.  I–Vol.  V (Springer/Tsinghua University Press, 2009), pp. 1445–1448.

Wang, Y.-D.

J. Byrne, S. Letendre, C. Govindarajalu, Y.-D. Wang, and R. Nigro, “Evaluating the economics of photovoltaics in a demand-side management role,” Energy Policy 24, 177–185(1996).
[CrossRef]

Winston, R.

Yao, Q.

Z. H. Lu, Q. Song, S. Q. Li, Q. Yao, and A. Othman, “The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell,” in Proceedings of ISES World Congress 2007, Vol.  I–Vol.  V (Springer/Tsinghua University Press, 2009), pp. 1445–1448.

Yoshioka, K.

S. Goma, K. Yoshioka, and T. Saitoh, “Effect of concentration distribution on cell performance for low-concentrators with a three-dimensional lens,” Sol. Energ. Mater. Sol. Cells 47, 339–344 (1997).
[CrossRef]

Zacharopoulos, A.

A. Zacharopoulos, P. C. Eames, D. McLarnon, and B. Norton, “Linear dielectric non-imaging concentrating covers for PV integrated building facades,” Sol. Energ. 68, 439–452 (2000).
[CrossRef]

Appl. Opt. (1)

Energy Policy (1)

J. Byrne, S. Letendre, C. Govindarajalu, Y.-D. Wang, and R. Nigro, “Evaluating the economics of photovoltaics in a demand-side management role,” Energy Policy 24, 177–185(1996).
[CrossRef]

Prog. Photovolt. (1)

A. Luque, G. Sala, and I. Luque-Heredia, “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt. 14, 413–428 (2006).
[CrossRef]

Sol. Energ. (8)

D. E. Prapas, B. Norton, and S. D. Probert, “Optics of parabolic-trough, solar-energy collectors, possessing small concentration ratios,” Sol. Energ. 39, 541–550 (1987).
[CrossRef]

L. G. Rainhart and W. P. Schimmel, Jr., “Effect of outdoor aging on acrylic sheet,” Sol. Energ. 17, 259–264 (1975).
[CrossRef]

A. Zacharopoulos, P. C. Eames, D. McLarnon, and B. Norton, “Linear dielectric non-imaging concentrating covers for PV integrated building facades,” Sol. Energ. 68, 439–452 (2000).
[CrossRef]

A. Rabl, “Comparison of solar concentrators,” Sol. Energ. 18, 93–111 (1976).
[CrossRef]

T. K. Mallick, P. C. Eames, T. J. Hyde, and B. Norton, “The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK,” Sol. Energ. 77, 319–327 (2004).
[CrossRef]

J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Sol. Energ. 80, 1199–1212 (2006).
[CrossRef]

W. R. McIntire, “Factored approximations for biaxial incident angle modifiers,” Sol. Energ. 29, 315–322 (1982).
[CrossRef]

R. Leutz and H. P. Annen, “Reverse ray-tracing model for the performance evaluation of stationary solar concentrators,” Sol. Energ. 81, 761–767 (2007).
[CrossRef]

Sol. Energ. Mater. Sol. Cells (2)

T. K. Mallick and P. C. Eames, “Design and fabrication of low concentrating second generation PRIDE concentrator,” Sol. Energ. Mater. Sol. Cells 91, 597–608 (2007).
[CrossRef]

S. Goma, K. Yoshioka, and T. Saitoh, “Effect of concentration distribution on cell performance for low-concentrators with a three-dimensional lens,” Sol. Energ. Mater. Sol. Cells 47, 339–344 (1997).
[CrossRef]

Technol. Forecast. Soc. Change (1)

A. Masini and P. Frankl, “Forecasting the diffusion of photovoltaic systems in southern Europe: a learning curve approach,” Technol. Forecast. Soc. Change 70, 39–65 (2003).
[CrossRef]

Other (4)

Z. H. Lu, Q. Song, S. Q. Li, Q. Yao, and A. Othman, “The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell,” in Proceedings of ISES World Congress 2007, Vol.  I–Vol.  V (Springer/Tsinghua University Press, 2009), pp. 1445–1448.

Meteorology data, PVsyst, http://www.pvsyst.com/ (University of Geneva, Switzerland, 2011).

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, 1991).

M. C. Morilla, J. M. Fernandez, I. Anton, D. Pachon, and G. Sala, “Buried contact cell design optimisation for concentration system,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 1149–1151.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic cross-sectional diagram of the design of the DiACPC-55. The change in acceptance of extreme rays with refractive index is shown with the values of n (the refractive index).

Fig. 2
Fig. 2

Concentrator reference system showing the positive and negative incidence angles for the building façade integration.

Fig. 3
Fig. 3

(a) Schematic ray-trace diagram of the DiACPC-55 with 100 representative rays. (b) Cross-sectional schematic diagram of the possible behavior of the incident solar radiation within a dielectric concentrator.

Fig. 4
Fig. 4

Angular acceptance of untruncated profiles and final design of the DiACPC-55, DiACPC-66, and DiACPC-77 for incidence angles 90 ° to 90 ° .

Fig. 5
Fig. 5

Optical efficiency of the DiACPC-55, DiACPC-66, and DiACPC-77.

Fig. 6
Fig. 6

(a) Energy flux distribution on the receiver of the DiACPC-55 for incidence radiation 5 ° , 25 ° , 45 ° , and 60 ° . (b) Energy flux distribution on the receiver of DiACPC-66 for incidence radiation 5 ° , 25 ° , 45 ° , and 60 ° . (c) Energy flux distribution on the receiver of DiACPC-77 for incidence radiation 5 ° , 25 ° , 45 ° , and 60 ° .

Fig. 7
Fig. 7

Energy flux distribution on the receiver of the DiACPC-55 with cosine diffuse radiation.

Fig. 8
Fig. 8

Optimization process flow chart for designed concentrators.

Tables (1)

Tables Icon

Table 1 Geometric Characteristics of the Dielectric Concentrators

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η ( θ ) = i = 1 m I i τ r exp ( α L i cos ( sin 1 ( sin θ / n ) ) ) ρ j I o ,
I rec = I o i = 1 m ( τ g I i + τ d I i + j ρ I i ) .
I D , ϕ = π 2 cos ϕ ,

Metrics