Abstract

Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two- wavelength (2λ) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization (20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. 30% increase in the average sensitivity was demonstrated for a 160×120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
    [CrossRef]
  2. A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
    [CrossRef]
  3. O. Manzardo, R. Michaely, F. Schadelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Hergiz, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437–1439 (2004).
    [CrossRef] [PubMed]
  4. C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517–2523 (2006).
    [CrossRef]
  5. H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
    [CrossRef]
  6. C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
    [CrossRef]
  7. E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
    [CrossRef] [PubMed]
  8. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
    [CrossRef]
  9. M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermomechanical detector array: design, fabrication, and testing,” Sens. Actuators A Phys. 156, 88–94 (2009).
    [CrossRef]
  10. B. V. Gorp, A. G. Onaran, and F. L. Degertekin, “Integrated dual grating method for extended range interferometric displacement detection in probe microscopy,” Appl. Phys. Lett. 91, 083101 (2007).
    [CrossRef]
  11. O. Karhade, L. Degertekin, and T. Kurfess, “Active control of grating interferometers for extended-range low noise operation,” Opt. Lett. 34, 3044–3046 (2009).
    [CrossRef] [PubMed]
  12. C. Polhemus, “Two-wavelength Interferometry,” Appl. Opt. 12, 2071–2074 (1973).
    [CrossRef] [PubMed]
  13. F. Bien, M. Camac, H. J. Caulfield, and S. Ezekiel, “Absolute distance measurements by variable wavelength interferometry,” Appl. Opt. 20, 400–402 (1981).
    [CrossRef] [PubMed]
  14. O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photon. Technol. Lett. 19, 1895–1897 (2007).
    [CrossRef]
  15. O. Ferhanoglu and H. Urey, “Sensitivity enhancement of bimaterial MOEMS thermal imaging sensor array using 2−λ readout,” Proc. SPIE 7718, 77180O (2010).
    [CrossRef]
  16. URL: www.hamamatsu.com.
  17. P. De Groot and S. Kishner, “Synthetic wavelength stabilization for two-color laser-diode interferometry,” Appl. Opt. 30, 4026–4033 (1991).
    [CrossRef] [PubMed]
  18. M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
    [CrossRef]

2010 (2)

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

O. Ferhanoglu and H. Urey, “Sensitivity enhancement of bimaterial MOEMS thermal imaging sensor array using 2−λ readout,” Proc. SPIE 7718, 77180O (2010).
[CrossRef]

2009 (3)

M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
[CrossRef]

O. Karhade, L. Degertekin, and T. Kurfess, “Active control of grating interferometers for extended-range low noise operation,” Opt. Lett. 34, 3044–3046 (2009).
[CrossRef] [PubMed]

M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermomechanical detector array: design, fabrication, and testing,” Sens. Actuators A Phys. 156, 88–94 (2009).
[CrossRef]

2007 (3)

B. V. Gorp, A. G. Onaran, and F. L. Degertekin, “Integrated dual grating method for extended range interferometric displacement detection in probe microscopy,” Appl. Phys. Lett. 91, 083101 (2007).
[CrossRef]

H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
[CrossRef]

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photon. Technol. Lett. 19, 1895–1897 (2007).
[CrossRef]

2006 (2)

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517–2523 (2006).
[CrossRef]

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

2004 (1)

2003 (1)

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

2002 (1)

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

1998 (1)

G. G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

1991 (1)

1981 (1)

1973 (1)

Alaca, B. E.

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

Atalar, A.

G. G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

Ataman, C.

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517–2523 (2006).
[CrossRef]

Balantekin, M.

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Bien, F.

Buchine, B. A.

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Burg, T. P.

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

Camac, M.

Caulfield, H. J.

De Groot, P.

Degertekin, F. L.

H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
[CrossRef]

B. V. Gorp, A. G. Onaran, and F. L. Degertekin, “Integrated dual grating method for extended range interferometric displacement detection in probe microscopy,” Appl. Phys. Lett. 91, 083101 (2007).
[CrossRef]

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Degertekin, L.

Erdtmann, M.

M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
[CrossRef]

Ezekiel, S.

Ferhanoglu, O.

O. Ferhanoglu and H. Urey, “Sensitivity enhancement of bimaterial MOEMS thermal imaging sensor array using 2−λ readout,” Proc. SPIE 7718, 77180O (2010).
[CrossRef]

M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermomechanical detector array: design, fabrication, and testing,” Sens. Actuators A Phys. 156, 88–94 (2009).
[CrossRef]

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photon. Technol. Lett. 19, 1895–1897 (2007).
[CrossRef]

Fritz, J.

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

Gorp, B. V.

B. V. Gorp, A. G. Onaran, and F. L. Degertekin, “Integrated dual grating method for extended range interferometric displacement detection in probe microscopy,” Appl. Phys. Lett. 91, 083101 (2007).
[CrossRef]

Guldiken, R. O.

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Hergiz, H. P.

Horowitz, R.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Hughes, W. L.

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Jin, G.

M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
[CrossRef]

Joseph, P.

H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
[CrossRef]

Karhade, O.

Kavakli, I. H.

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

Kilic, M. S.

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

Kishner, S.

Kitching, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Kurfess, T.

Lee, W.

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Majumdar, A.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Manalis, S. R.

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

G. G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

Manzardo, O.

Mao, M.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Michaely, R.

Nargul, S.

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

Noell, W.

Norton, P.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Onaran, A. G.

B. V. Gorp, A. G. Onaran, and F. L. Degertekin, “Integrated dual grating method for extended range interferometric displacement detection in probe microscopy,” Appl. Phys. Lett. 91, 083101 (2007).
[CrossRef]

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Overstolz, T.

Ozber, N.

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

Parlak, Z.

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Polhemus, C.

Quate, C. F.

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

G. G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

Radhakrishnan, S.

M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
[CrossRef]

Rooij, N. D.

Salerno, J.

M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
[CrossRef]

Sarangapani, K. K.

H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
[CrossRef]

Savran, C. A.

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

Schadelin, F.

Simelgor, G.

M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
[CrossRef]

Sutanto, J.

H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
[CrossRef]

Timurdogan, E.

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

Torun, H.

M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermomechanical detector array: design, fabrication, and testing,” Sens. Actuators A Phys. 156, 88–94 (2009).
[CrossRef]

H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
[CrossRef]

Toy, M. F.

M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermomechanical detector array: design, fabrication, and testing,” Sens. Actuators A Phys. 156, 88–94 (2009).
[CrossRef]

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photon. Technol. Lett. 19, 1895–1897 (2007).
[CrossRef]

Urey, H.

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

O. Ferhanoglu and H. Urey, “Sensitivity enhancement of bimaterial MOEMS thermal imaging sensor array using 2−λ readout,” Proc. SPIE 7718, 77180O (2010).
[CrossRef]

M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermomechanical detector array: design, fabrication, and testing,” Sens. Actuators A Phys. 156, 88–94 (2009).
[CrossRef]

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photon. Technol. Lett. 19, 1895–1897 (2007).
[CrossRef]

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517–2523 (2006).
[CrossRef]

Varesi, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Wolter, A.

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517–2523 (2006).
[CrossRef]

Yaralioglu, G. G.

G. G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

Yavuz, S.

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

Zhang, L.

M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
[CrossRef]

Zhao, Y.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Zhu, C.

H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

B. V. Gorp, A. G. Onaran, and F. L. Degertekin, “Integrated dual grating method for extended range interferometric displacement detection in probe microscopy,” Appl. Phys. Lett. 91, 083101 (2007).
[CrossRef]

Biosens. Bioelectron. (1)

E. Timurdogan, N. Ozber, S. Nargul, S. Yavuz, M. S. Kilic, I. H. Kavakli, H. Urey, and B. E. Alaca, “Detection of human K-opioid antibody using microresonators with integrated optical readout,” Biosens. Bioelectron. 26, 195–201(2010).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photon. Technol. Lett. 19, 1895–1897 (2007).
[CrossRef]

IEEE/ASME J. Microelectromech. Syst. (1)

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” IEEE/ASME J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

J. Appl. Phys. (1)

G. G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

J. Micromech. Microeng. (1)

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517–2523 (2006).
[CrossRef]

Nanotech. (1)

H. Torun, J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu, “Micromachined membrane-based active probe for biomolecular mechanics measurement,” Nanotech. 18, 165303 (2007).
[CrossRef]

Opt. Lett. (2)

Optical readout photomechanical imager: from design to implementation (1)

M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation ,” Proc. SPIE 7298, 72980I (2009).
[CrossRef]

Proc. SPIE (1)

O. Ferhanoglu and H. Urey, “Sensitivity enhancement of bimaterial MOEMS thermal imaging sensor array using 2−λ readout,” Proc. SPIE 7718, 77180O (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

A. G. Onaran, M. Balantekin, W. Lee, W. L. Hughes, B. A. Buchine, R. O. Guldiken, Z. Parlak, C. F. Quate, and F. L. Degertekin, “A new atomic force microscope probe with force sensing integrated readout and active tip,” Rev. Sci. Instrum. 77, 023501 (2006).
[CrossRef]

Sens. Actuators A Phys. (1)

M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermomechanical detector array: design, fabrication, and testing,” Sens. Actuators A Phys. 156, 88–94 (2009).
[CrossRef]

Other (1)

URL: www.hamamatsu.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Diffraction grating based MEMS sensor on a transparent substrate that is illuminated with two lasers with wavelengths λ 1 and λ 2 (b) Proposed method using two-wavelength illumination where the sensor array, with gap variation, is illuminated by two sources, one at a time. The diffracted first order light is imaged onto an array of photodetectors, i.e., a CCD camera. (c) Details of the thermal imaging experiment where the blackbody radiation emitted from an IR heater that is covered with an aperture is imaged onto the thermomechanical sensor array.

Fig. 2
Fig. 2

Sensitivities: S ( λ 1 , g ) and S ( λ 2 , g ) with respect to the gap change. Any displacement around the mean gap: g 0 = 2.25 μm causes an increase in the combined sensitivity.

Fig. 3
Fig. 3

Expected sensitivity histograms with λ 1 , λ 2 , and combined λ 1 , λ 2 readout assuming the same set of gap values for the sensor array g 1 = g 2 = N ( g 0 , σ ) (synchronous), and assuming different and independent set of gap values: g 1 = N ( g 0 , σ ) , g 2 = N ( g 0 , σ ) (asynchronous), for the sensor array during λ 1 , λ 2 measurements for σ = 10 , 15, and 20 nm . “μ” denotes the average sensitivity of histograms.

Fig. 4
Fig. 4

(a) Target used in the experiment: periodic PCB slab, which is placed in front of an IR heater. (b) Zoomed image of about 50 sensors captured by using first order diffracted light. (c) Image of 20, 000 sensors by using first order diffracted light acquired by λ 1 . (e) Same image acquired by λ 2 . (e) Combined image of (c) and (d) using a postdetection signal processing by taking the larger change with respect to the reference image. (f) Histogram of the λ 1 difference image. (g) Histogram of λ 2 difference image. (h) Histogram of the combined image. The average sensitivity μ increases from 17 CCD levels for each individual image up to 22.7 CCD levels.

Tables (1)

Tables Icon

Table 1 Comparison of Synchronous and Asynchronous Modes of Operation in Two-Wavelength Readout a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 0 α ( cos ( 2 π g λ ) ) 2 ,
I odd α ( sin ( 2 π g λ ) ) 2 ,
S ( λ , g ) = | d I ( λ , g ) / d g | = | 2 π λ sin ( 4 π λ g ) | ,
S 2 λ ( λ 1 , λ 2 , g ) = [ min [ λ 1 , λ 2 ] 2 π ] max [ S ( λ 1 , g ) , S ( λ 2 , g ) ] ,
λ S = λ 1 λ 2 | λ 1 λ 2 | .
g = N ( g 0 , σ ) ,

Metrics