Abstract

The spatial and temporal evolution of laser-induced shock waves at a titanium–water interface was anal yzed using a beam deflection setup. The focusing conditions of the source laser were varied, and its effect onto the dynamics of shock waves was elucidated. For a tightly focused condition, the speed of the shock wave was 6.4Km/s, whereas for a defocused condition the velocities reduced to <3km/s at the vicinity of the titanium–water interface. When the laser is focused a few millimeters above the target, i.e., within the water, the emission of dual shock waves was observed toward the rear side of the focal volume. These shock waves originate from the titanium–water interface as well as from the pure water breakdown region, respectively. The shock wave pressure is estimated from the shock wave velocity using the Newton’s second law across a shock wave discontinuity. The shock wave pressure for a tightly focused condition was 18GPa, whereas under a defocused condition the pressure experienced was 1GPa in the proximity of target.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamics Phenomena (Academic, 1967).
  2. D. A. Hutchins, “Ultrasonic generation by pulsed lasers,” Phys. Acoust. 18, 21–123 (1988).
  3. P. Forget and M. Jeandin, “Déformation à l’échelle cristallographique d’alliages à base de nickel mono- et polycristallins par choc laser en mode confine,” J. Phys. III France 5, 1133–1144 (1995).
    [CrossRef]
  4. G. Banaś, H. E. Elsayed-Ali, F. V. Lawrence, Jr., and J. M. Rigsbee, “Laser shock-induced mechanical and microstructural modification of welded maraging steel,” J. Appl. Phys. 67, 2380–2384 (1990).
    [CrossRef]
  5. B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminium,” J. Appl. Phys. 43, 3893–3895 (1972).
    [CrossRef]
  6. R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10, 265–279 (1998).
    [CrossRef]
  7. Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
    [CrossRef]
  8. Y. K. Zhang, C. L. Hu, L. Cai, J. C. Yang, and X. R. Zhang, “Mechanism of improvement on fatigue life of metal by laser-excited shock waves,” Appl. Phys. A 72, 113–116(2001).
    [CrossRef]
  9. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
    [CrossRef]
  10. A. Kruusing, “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41, 307–327 (2004).
    [CrossRef]
  11. C. Konagai, Y. Sano, and N. Aoki, “Underwater direct metal processing by high-power copper vapour laser,” in Pulsed Metal Vapour Lasers, C.E.Little and N.V.Sabotinov, eds. (Kluwer Academic, 1996), pp. 371–376.
  12. M. W. Berns, W. H. Wright, and R. W. Steubing, “Laser microbeam as a tool in cell biology,” Int. Rev. Cytol. 129, 1–44 (1991).
    [CrossRef] [PubMed]
  13. D. R. Stager, Jr., X. Wang, D. R. Weakley, Jr., and J. Jelius, “The effectiveness of Nd:YAG laser capsulotomy for the treatment of posterior capsule opacification in children with acrylic intraocular lenses,” J. AAPOS 10, 159–163 (2006).
    [CrossRef] [PubMed]
  14. R. Hofmann and R. Hartung, “Laser-induced shock-wave lithotripsy of ureteric calculi,” World J. Urol. 7, 142–146(1989).
    [CrossRef]
  15. S. A. Batishche, “Features of gallstone and kidney stone fragmentation by IR-pulsed Nd:YAG laser radiation,” Proc. SPIE 2395, 94–97 (1995).
    [CrossRef]
  16. A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2260 (1990).
    [CrossRef]
  17. M. K. Fallor and R. H. Hoft, “Intraocular lens damage associated with posterior capsulotomy: a comparison of intraocular lens designs and four different Nd:YAG laser instruments,” J. Am. Intra Ocul. Implant Soc. 11, 564–567 (1985).
  18. J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown,” Invest. Ophthalmol. Visual Sci. 26, 1771–1777(1985).
  19. X. Chen, R.-Q. Xu, J.-P. Chen, Z.-H. Shen, L. Jian, and X.-W. Ni, “Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water,” Appl. Opt. 43, 3251–3257 (2004).
    [CrossRef] [PubMed]
  20. R. Petkovšek, J. Možina, and G. Močnik, “Optodynamic characterization of the shock waves after laser-induced breakdown in water,” Opt. Express 13, 4107–4112 (2005).
    [CrossRef] [PubMed]
  21. G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007).
    [CrossRef]
  22. Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
    [CrossRef]
  23. C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
    [CrossRef]
  24. A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
    [CrossRef]
  25. L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  26. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).
  27. J. Noack and A. Vogel, “Laser–induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coeffecients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
    [CrossRef]
  28. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27, 3661–3668 (1988).
    [CrossRef] [PubMed]
  29. P. Zhong, I. Cioanta, S. Zhu, F. H. Cocks, and G. M. Preminger, “Effects of tissue constraint on shock wave-induced bubble expansion in vivo,” J. Acoust. Soc. Am. 104, 3126–3129 (1998).
    [CrossRef] [PubMed]
  30. P. Zhong, I. Cioanta, F. H. Cocks, and G. M. Preminger, “Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy,” J. Acoust. Soc. Am. 101, 2940–2950 (1997).
    [CrossRef] [PubMed]
  31. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245(1991).
    [CrossRef]
  32. P. Harris and H. N. Presles, “Reflectivity of 5.8 kbar shock front in water,” J. Chem. Phys. 74, 6864–6866 (1981).
    [CrossRef]
  33. M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–830 (1957).
    [CrossRef]
  34. F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120(2001).
    [CrossRef]
  35. C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
    [CrossRef]
  36. V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, “Size induced structural transitions in Cu-O and Ce-O systems,” Phys. Rev. B 53, 2167–2170 (1996).
    [CrossRef]

2011 (1)

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

2007 (1)

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007).
[CrossRef]

2006 (1)

D. R. Stager, Jr., X. Wang, D. R. Weakley, Jr., and J. Jelius, “The effectiveness of Nd:YAG laser capsulotomy for the treatment of posterior capsule opacification in children with acrylic intraocular lenses,” J. AAPOS 10, 159–163 (2006).
[CrossRef] [PubMed]

2005 (3)

R. Petkovšek, J. Možina, and G. Močnik, “Optodynamic characterization of the shock waves after laser-induced breakdown in water,” Opt. Express 13, 4107–4112 (2005).
[CrossRef] [PubMed]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

2004 (2)

X. Chen, R.-Q. Xu, J.-P. Chen, Z.-H. Shen, L. Jian, and X.-W. Ni, “Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water,” Appl. Opt. 43, 3251–3257 (2004).
[CrossRef] [PubMed]

A. Kruusing, “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41, 307–327 (2004).
[CrossRef]

2003 (1)

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

2001 (2)

F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120(2001).
[CrossRef]

Y. K. Zhang, C. L. Hu, L. Cai, J. C. Yang, and X. R. Zhang, “Mechanism of improvement on fatigue life of metal by laser-excited shock waves,” Appl. Phys. A 72, 113–116(2001).
[CrossRef]

2000 (1)

Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
[CrossRef]

1999 (1)

J. Noack and A. Vogel, “Laser–induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coeffecients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

1998 (2)

P. Zhong, I. Cioanta, S. Zhu, F. H. Cocks, and G. M. Preminger, “Effects of tissue constraint on shock wave-induced bubble expansion in vivo,” J. Acoust. Soc. Am. 104, 3126–3129 (1998).
[CrossRef] [PubMed]

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10, 265–279 (1998).
[CrossRef]

1997 (1)

P. Zhong, I. Cioanta, F. H. Cocks, and G. M. Preminger, “Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy,” J. Acoust. Soc. Am. 101, 2940–2950 (1997).
[CrossRef] [PubMed]

1996 (1)

V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, “Size induced structural transitions in Cu-O and Ce-O systems,” Phys. Rev. B 53, 2167–2170 (1996).
[CrossRef]

1995 (2)

P. Forget and M. Jeandin, “Déformation à l’échelle cristallographique d’alliages à base de nickel mono- et polycristallins par choc laser en mode confine,” J. Phys. III France 5, 1133–1144 (1995).
[CrossRef]

S. A. Batishche, “Features of gallstone and kidney stone fragmentation by IR-pulsed Nd:YAG laser radiation,” Proc. SPIE 2395, 94–97 (1995).
[CrossRef]

1991 (2)

M. W. Berns, W. H. Wright, and R. W. Steubing, “Laser microbeam as a tool in cell biology,” Int. Rev. Cytol. 129, 1–44 (1991).
[CrossRef] [PubMed]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245(1991).
[CrossRef]

1990 (3)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

G. Banaś, H. E. Elsayed-Ali, F. V. Lawrence, Jr., and J. M. Rigsbee, “Laser shock-induced mechanical and microstructural modification of welded maraging steel,” J. Appl. Phys. 67, 2380–2384 (1990).
[CrossRef]

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2260 (1990).
[CrossRef]

1989 (1)

R. Hofmann and R. Hartung, “Laser-induced shock-wave lithotripsy of ureteric calculi,” World J. Urol. 7, 142–146(1989).
[CrossRef]

1988 (2)

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

1985 (2)

M. K. Fallor and R. H. Hoft, “Intraocular lens damage associated with posterior capsulotomy: a comparison of intraocular lens designs and four different Nd:YAG laser instruments,” J. Am. Intra Ocul. Implant Soc. 11, 564–567 (1985).

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown,” Invest. Ophthalmol. Visual Sci. 26, 1771–1777(1985).

1981 (1)

P. Harris and H. N. Presles, “Reflectivity of 5.8 kbar shock front in water,” J. Chem. Phys. 74, 6864–6866 (1981).
[CrossRef]

1972 (1)

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminium,” J. Appl. Phys. 43, 3893–3895 (1972).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

1957 (1)

M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–830 (1957).
[CrossRef]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Aoki, N.

C. Konagai, Y. Sano, and N. Aoki, “Underwater direct metal processing by high-power copper vapour laser,” in Pulsed Metal Vapour Lasers, C.E.Little and N.V.Sabotinov, eds. (Kluwer Academic, 1996), pp. 371–376.

Asiyo, M. N.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2260 (1990).
[CrossRef]

Ayyub, P.

V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, “Size induced structural transitions in Cu-O and Ce-O systems,” Phys. Rev. B 53, 2167–2170 (1996).
[CrossRef]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Banas, G.

G. Banaś, H. E. Elsayed-Ali, F. V. Lawrence, Jr., and J. M. Rigsbee, “Laser shock-induced mechanical and microstructural modification of welded maraging steel,” J. Appl. Phys. 67, 2380–2384 (1990).
[CrossRef]

Batishche, S. A.

S. A. Batishche, “Features of gallstone and kidney stone fragmentation by IR-pulsed Nd:YAG laser radiation,” Proc. SPIE 2395, 94–97 (1995).
[CrossRef]

Berns, M. W.

M. W. Berns, W. H. Wright, and R. W. Steubing, “Laser microbeam as a tool in cell biology,” Int. Rev. Cytol. 129, 1–44 (1991).
[CrossRef] [PubMed]

Berthe, L.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10, 265–279 (1998).
[CrossRef]

Birngruber, R.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245(1991).
[CrossRef]

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2260 (1990).
[CrossRef]

Cai, L.

Y. K. Zhang, C. L. Hu, L. Cai, J. C. Yang, and X. R. Zhang, “Mechanism of improvement on fatigue life of metal by laser-excited shock waves,” Appl. Phys. A 72, 113–116(2001).
[CrossRef]

Capon, M. R. C.

Chattopadhyay, S.

V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, “Size induced structural transitions in Cu-O and Ce-O systems,” Phys. Rev. B 53, 2167–2170 (1996).
[CrossRef]

Chen, J.-P.

Chen, X.

Cioanta, I.

P. Zhong, I. Cioanta, S. Zhu, F. H. Cocks, and G. M. Preminger, “Effects of tissue constraint on shock wave-induced bubble expansion in vivo,” J. Acoust. Soc. Am. 104, 3126–3129 (1998).
[CrossRef] [PubMed]

P. Zhong, I. Cioanta, F. H. Cocks, and G. M. Preminger, “Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy,” J. Acoust. Soc. Am. 101, 2940–2950 (1997).
[CrossRef] [PubMed]

Cocks, F. H.

P. Zhong, I. Cioanta, S. Zhu, F. H. Cocks, and G. M. Preminger, “Effects of tissue constraint on shock wave-induced bubble expansion in vivo,” J. Acoust. Soc. Am. 104, 3126–3129 (1998).
[CrossRef] [PubMed]

P. Zhong, I. Cioanta, F. H. Cocks, and G. M. Preminger, “Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy,” J. Acoust. Soc. Am. 101, 2940–2950 (1997).
[CrossRef] [PubMed]

Cui, H.

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Deutsch, T. F.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245(1991).
[CrossRef]

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Docchio, F.

Doukas, A. G.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245(1991).
[CrossRef]

Elsayed-Ali, H. E.

G. Banaś, H. E. Elsayed-Ali, F. V. Lawrence, Jr., and J. M. Rigsbee, “Laser shock-induced mechanical and microstructural modification of welded maraging steel,” J. Appl. Phys. 67, 2380–2384 (1990).
[CrossRef]

Fabbro, R.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10, 265–279 (1998).
[CrossRef]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Fairand, B. P.

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminium,” J. Appl. Phys. 43, 3893–3895 (1972).
[CrossRef]

Fallor, M. K.

M. K. Fallor and R. H. Hoft, “Intraocular lens damage associated with posterior capsulotomy: a comparison of intraocular lens designs and four different Nd:YAG laser instruments,” J. Am. Intra Ocul. Implant Soc. 11, 564–567 (1985).

Forget, P.

P. Forget and M. Jeandin, “Déformation à l’échelle cristallographique d’alliages à base de nickel mono- et polycristallins par choc laser en mode confine,” J. Phys. III France 5, 1133–1144 (1995).
[CrossRef]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Frieser, A.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2260 (1990).
[CrossRef]

Frisoli, J. K.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245(1991).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown,” Invest. Ophthalmol. Visual Sci. 26, 1771–1777(1985).

Gallagher, W. J.

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminium,” J. Appl. Phys. 43, 3893–3895 (1972).
[CrossRef]

Harris, P.

P. Harris and H. N. Presles, “Reflectivity of 5.8 kbar shock front in water,” J. Chem. Phys. 74, 6864–6866 (1981).
[CrossRef]

Hartung, R.

R. Hofmann and R. Hartung, “Laser-induced shock-wave lithotripsy of ureteric calculi,” World J. Urol. 7, 142–146(1989).
[CrossRef]

Hofmann, R.

R. Hofmann and R. Hartung, “Laser-induced shock-wave lithotripsy of ureteric calculi,” World J. Urol. 7, 142–146(1989).
[CrossRef]

Hoft, R. H.

M. K. Fallor and R. H. Hoft, “Intraocular lens damage associated with posterior capsulotomy: a comparison of intraocular lens designs and four different Nd:YAG laser instruments,” J. Am. Intra Ocul. Implant Soc. 11, 564–567 (1985).

Hu, C. L.

Y. K. Zhang, C. L. Hu, L. Cai, J. C. Yang, and X. R. Zhang, “Mechanism of improvement on fatigue life of metal by laser-excited shock waves,” Appl. Phys. A 72, 113–116(2001).
[CrossRef]

Hutchins, D. A.

D. A. Hutchins, “Ultrasonic generation by pulsed lasers,” Phys. Acoust. 18, 21–123 (1988).

Ippen, E. P.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown,” Invest. Ophthalmol. Visual Sci. 26, 1771–1777(1985).

Jeandin, M.

P. Forget and M. Jeandin, “Déformation à l’échelle cristallographique d’alliages à base de nickel mono- et polycristallins par choc laser en mode confine,” J. Phys. III France 5, 1133–1144 (1995).
[CrossRef]

Jelius, J.

D. R. Stager, Jr., X. Wang, D. R. Weakley, Jr., and J. Jelius, “The effectiveness of Nd:YAG laser capsulotomy for the treatment of posterior capsule opacification in children with acrylic intraocular lenses,” J. AAPOS 10, 159–163 (2006).
[CrossRef] [PubMed]

Jian, L.

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Khare, A.

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

Kimura, M.

Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
[CrossRef]

Kohno, J.-Y.

F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120(2001).
[CrossRef]

Konagai, C.

C. Konagai, Y. Sano, and N. Aoki, “Underwater direct metal processing by high-power copper vapour laser,” in Pulsed Metal Vapour Lasers, C.E.Little and N.V.Sabotinov, eds. (Kluwer Academic, 1996), pp. 371–376.

Kondow, T.

F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120(2001).
[CrossRef]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Kruusing, A.

A. Kruusing, “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41, 307–327 (2004).
[CrossRef]

Laha, S. S.

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

Lawrence, F. V.

G. Banaś, H. E. Elsayed-Ali, F. V. Lawrence, Jr., and J. M. Rigsbee, “Laser shock-induced mechanical and microstructural modification of welded maraging steel,” J. Appl. Phys. 67, 2380–2384 (1990).
[CrossRef]

Lin, W. Z.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown,” Invest. Ophthalmol. Visual Sci. 26, 1771–1777(1985).

Liu, P.

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

Liu, Q. X.

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

Mafuné, F.

F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120(2001).
[CrossRef]

Mellerio, J.

Minoru, O.

Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
[CrossRef]

Mocnik, G.

Možina, J.

Mukai, N.

Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
[CrossRef]

Multani, M.

V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, “Size induced structural transitions in Cu-O and Ce-O systems,” Phys. Rev. B 53, 2167–2170 (1996).
[CrossRef]

Nath, A.

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

Ni, X.-W.

Noack, J.

J. Noack and A. Vogel, “Laser–induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coeffecients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

Ogisu, T.

Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
[CrossRef]

Palkar, V. R.

V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, “Size induced structural transitions in Cu-O and Ce-O systems,” Phys. Rev. B 53, 2167–2170 (1996).
[CrossRef]

Petkovšek, R.

Peyre, P.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10, 265–279 (1998).
[CrossRef]

Preminger, G. M.

P. Zhong, I. Cioanta, S. Zhu, F. H. Cocks, and G. M. Preminger, “Effects of tissue constraint on shock wave-induced bubble expansion in vivo,” J. Acoust. Soc. Am. 104, 3126–3129 (1998).
[CrossRef] [PubMed]

P. Zhong, I. Cioanta, F. H. Cocks, and G. M. Preminger, “Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy,” J. Acoust. Soc. Am. 101, 2940–2950 (1997).
[CrossRef] [PubMed]

Presles, H. N.

P. Harris and H. N. Presles, “Reflectivity of 5.8 kbar shock front in water,” J. Chem. Phys. 74, 6864–6866 (1981).
[CrossRef]

Puliafito, C. A.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown,” Invest. Ophthalmol. Visual Sci. 26, 1771–1777(1985).

Raizer, Y. P.

Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamics Phenomena (Academic, 1967).

Regondi, P.

Rice, M. H.

M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–830 (1957).
[CrossRef]

Rigsbee, J. M.

G. Banaś, H. E. Elsayed-Ali, F. V. Lawrence, Jr., and J. M. Rigsbee, “Laser shock-induced mechanical and microstructural modification of welded maraging steel,” J. Appl. Phys. 67, 2380–2384 (1990).
[CrossRef]

Sano, Y.

Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
[CrossRef]

C. Konagai, Y. Sano, and N. Aoki, “Underwater direct metal processing by high-power copper vapour laser,” in Pulsed Metal Vapour Lasers, C.E.Little and N.V.Sabotinov, eds. (Kluwer Academic, 1996), pp. 371–376.

Sawabe, H.

F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120(2001).
[CrossRef]

Scherpereel, X.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10, 265–279 (1998).
[CrossRef]

Schweiger, P.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2260 (1990).
[CrossRef]

Shen, Z.-H.

Stager, D. R.

D. R. Stager, Jr., X. Wang, D. R. Weakley, Jr., and J. Jelius, “The effectiveness of Nd:YAG laser capsulotomy for the treatment of posterior capsule opacification in children with acrylic intraocular lenses,” J. AAPOS 10, 159–163 (2006).
[CrossRef] [PubMed]

Steinert, R. F.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown,” Invest. Ophthalmol. Visual Sci. 26, 1771–1777(1985).

Steubing, R. W.

M. W. Berns, W. H. Wright, and R. W. Steubing, “Laser microbeam as a tool in cell biology,” Int. Rev. Cytol. 129, 1–44 (1991).
[CrossRef] [PubMed]

Takeda, Y.

F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120(2001).
[CrossRef]

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Vogel, A.

J. Noack and A. Vogel, “Laser–induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coeffecients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2260 (1990).
[CrossRef]

Walsh, J. M.

M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–830 (1957).
[CrossRef]

Wang, C. X.

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

Wang, G. W.

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

Wang, X.

D. R. Stager, Jr., X. Wang, D. R. Weakley, Jr., and J. Jelius, “The effectiveness of Nd:YAG laser capsulotomy for the treatment of posterior capsule opacification in children with acrylic intraocular lenses,” J. AAPOS 10, 159–163 (2006).
[CrossRef] [PubMed]

Weakley, D. R.

D. R. Stager, Jr., X. Wang, D. R. Weakley, Jr., and J. Jelius, “The effectiveness of Nd:YAG laser capsulotomy for the treatment of posterior capsule opacification in children with acrylic intraocular lenses,” J. AAPOS 10, 159–163 (2006).
[CrossRef] [PubMed]

Wilcox, B. A.

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminium,” J. Appl. Phys. 43, 3893–3895 (1972).
[CrossRef]

Williams, D. N.

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminium,” J. Appl. Phys. 43, 3893–3895 (1972).
[CrossRef]

Wright, W. H.

M. W. Berns, W. H. Wright, and R. W. Steubing, “Laser microbeam as a tool in cell biology,” Int. Rev. Cytol. 129, 1–44 (1991).
[CrossRef] [PubMed]

Xu, R.-Q.

Yang, G. W.

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007).
[CrossRef]

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

Yang, J. C.

Y. K. Zhang, C. L. Hu, L. Cai, J. C. Yang, and X. R. Zhang, “Mechanism of improvement on fatigue life of metal by laser-excited shock waves,” Appl. Phys. A 72, 113–116(2001).
[CrossRef]

Yang, Y. H.

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

Yoda, M.

Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
[CrossRef]

Zel’dovich, Y. B.

Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamics Phenomena (Academic, 1967).

Zhang, W.

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

Zhang, X. R.

Y. K. Zhang, C. L. Hu, L. Cai, J. C. Yang, and X. R. Zhang, “Mechanism of improvement on fatigue life of metal by laser-excited shock waves,” Appl. Phys. A 72, 113–116(2001).
[CrossRef]

Zhang, Y. K.

Y. K. Zhang, C. L. Hu, L. Cai, J. C. Yang, and X. R. Zhang, “Mechanism of improvement on fatigue life of metal by laser-excited shock waves,” Appl. Phys. A 72, 113–116(2001).
[CrossRef]

Zhong, P.

P. Zhong, I. Cioanta, S. Zhu, F. H. Cocks, and G. M. Preminger, “Effects of tissue constraint on shock wave-induced bubble expansion in vivo,” J. Acoust. Soc. Am. 104, 3126–3129 (1998).
[CrossRef] [PubMed]

P. Zhong, I. Cioanta, F. H. Cocks, and G. M. Preminger, “Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy,” J. Acoust. Soc. Am. 101, 2940–2950 (1997).
[CrossRef] [PubMed]

Zhu, S.

P. Zhong, I. Cioanta, S. Zhu, F. H. Cocks, and G. M. Preminger, “Effects of tissue constraint on shock wave-induced bubble expansion in vivo,” J. Acoust. Soc. Am. 104, 3126–3129 (1998).
[CrossRef] [PubMed]

Zweig, A. D.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245(1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

Y. K. Zhang, C. L. Hu, L. Cai, J. C. Yang, and X. R. Zhang, “Mechanism of improvement on fatigue life of metal by laser-excited shock waves,” Appl. Phys. A 72, 113–116(2001).
[CrossRef]

Appl. Phys. B (1)

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237–245(1991).
[CrossRef]

Appl. Phys. Lett. (1)

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG laser surgery: light–tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2260 (1990).
[CrossRef]

J. Noack and A. Vogel, “Laser–induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coeffecients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

Int. Rev. Cytol. (1)

M. W. Berns, W. H. Wright, and R. W. Steubing, “Laser microbeam as a tool in cell biology,” Int. Rev. Cytol. 129, 1–44 (1991).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown,” Invest. Ophthalmol. Visual Sci. 26, 1771–1777(1985).

J. AAPOS (1)

D. R. Stager, Jr., X. Wang, D. R. Weakley, Jr., and J. Jelius, “The effectiveness of Nd:YAG laser capsulotomy for the treatment of posterior capsule opacification in children with acrylic intraocular lenses,” J. AAPOS 10, 159–163 (2006).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (2)

P. Zhong, I. Cioanta, S. Zhu, F. H. Cocks, and G. M. Preminger, “Effects of tissue constraint on shock wave-induced bubble expansion in vivo,” J. Acoust. Soc. Am. 104, 3126–3129 (1998).
[CrossRef] [PubMed]

P. Zhong, I. Cioanta, F. H. Cocks, and G. M. Preminger, “Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy,” J. Acoust. Soc. Am. 101, 2940–2950 (1997).
[CrossRef] [PubMed]

J. Am. Intra Ocul. Implant Soc. (1)

M. K. Fallor and R. H. Hoft, “Intraocular lens damage associated with posterior capsulotomy: a comparison of intraocular lens designs and four different Nd:YAG laser instruments,” J. Am. Intra Ocul. Implant Soc. 11, 564–567 (1985).

J. Appl. Phys. (4)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

G. Banaś, H. E. Elsayed-Ali, F. V. Lawrence, Jr., and J. M. Rigsbee, “Laser shock-induced mechanical and microstructural modification of welded maraging steel,” J. Appl. Phys. 67, 2380–2384 (1990).
[CrossRef]

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminium,” J. Appl. Phys. 43, 3893–3895 (1972).
[CrossRef]

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

J. Chem. Phys. (2)

P. Harris and H. N. Presles, “Reflectivity of 5.8 kbar shock front in water,” J. Chem. Phys. 74, 6864–6866 (1981).
[CrossRef]

M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–830 (1957).
[CrossRef]

J. Laser Appl. (1)

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10, 265–279 (1998).
[CrossRef]

J. Phys. Chem. B (1)

F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120(2001).
[CrossRef]

J. Phys. III France (1)

P. Forget and M. Jeandin, “Déformation à l’échelle cristallographique d’alliages à base de nickel mono- et polycristallins par choc laser en mode confine,” J. Phys. III France 5, 1133–1144 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

A. Kruusing, “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41, 307–327 (2004).
[CrossRef]

Phys. Acoust. (1)

D. A. Hutchins, “Ultrasonic generation by pulsed lasers,” Phys. Acoust. 18, 21–123 (1988).

Phys. Rev. B (1)

V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, “Size induced structural transitions in Cu-O and Ce-O systems,” Phys. Rev. B 53, 2167–2170 (1996).
[CrossRef]

Proc. SPIE (2)

S. A. Batishche, “Features of gallstone and kidney stone fragmentation by IR-pulsed Nd:YAG laser radiation,” Proc. SPIE 2395, 94–97 (1995).
[CrossRef]

Y. Sano, M. Kimura, N. Mukai, M. Yoda, O. Minoru, and T. Ogisu, “Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser, ” Proc. SPIE 3888, 294–306 (2000).
[CrossRef]

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007).
[CrossRef]

Sov. Phys. JETP (2)

L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

World J. Urol. (1)

R. Hofmann and R. Hartung, “Laser-induced shock-wave lithotripsy of ureteric calculi,” World J. Urol. 7, 142–146(1989).
[CrossRef]

Other (2)

Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamics Phenomena (Academic, 1967).

C. Konagai, Y. Sano, and N. Aoki, “Underwater direct metal processing by high-power copper vapour laser,” in Pulsed Metal Vapour Lasers, C.E.Little and N.V.Sabotinov, eds. (Kluwer Academic, 1996), pp. 371–376.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of BDS. (b), (c) Illustration of laser focusing condition.

Fig. 2
Fig. 2

Complete trace of BDS for the tightly focused condition (B) at 0 mm from the titanium–water interface.

Fig. 3
Fig. 3

Comparison of beam-deflected signal for focusing conditions focus (Trace 2) and above-focus (Trace 3).

Fig. 4
Fig. 4

Beam deflection traces for focusing conditions (a) above-focus, (b) focus, (c) below-focus.

Fig. 5
Fig. 5

Shock wave velocities at focusing conditions (a) above-focus, (b) focus, (c) below-focus.

Fig. 6
Fig. 6

Estimated shock wave pressure for focusing conditions (a) above-focus, (b) focus, (c) below-focus.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P P 0 = U s u p ρ ,
U s = A + B u p ,

Metrics