Abstract

The relationship between refractive index and nanoparticle radii of cadmium selenide (CdSe) nano particles embedded within glass matrixes was investigated experimentally and by simulations. A homemade automated Michelson interferometer arrangement employing a rotating table and a He–Ne laser source at a wavelength of 632.8nm determined the refractive index versus nanoparticle radii of embedded cadmium selenide (CdSe) nanoparticles. The refractive index was found to decrease linearly with nanoparticle radius increase. However, one sample showed a step increase in refractive index; on spectroscopic analysis, it was found that its resonant wavelength matched that of the He–Ne source wavelength. The simulations showed that two conditions caused the step increase in refractive index: low plasma frequency and matched sample and source resonances. This simple interferometer setup defines a new method of determining the radii of nanoparticles embedded in substrates and enables refractive index tailoring by modification of exact annealing conditions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Banfi, V. Degiorgio, and B. Speit, “Neutron scattering investigation of the structure of semiconductor‐doped glasses,” J. Appl. Phys. 74, 6925–6936 (1993).
    [CrossRef]
  2. Schott Glass Filter Catalogue (2009).
  3. A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).
  4. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles,” Annu. Rev. Mater. Sci. 30, 545–610 (2000).
    [CrossRef]
  5. L. E. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Chem. Phys. 90, 2555–2560 (1986).
    [CrossRef]
  6. F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
    [CrossRef]
  7. Y. Masumoto and K. Snobe, “Size-dependent energy levels of CdTe quantum dots,” Phys. Rev. B 56, 9734–9737(1997).
    [CrossRef]
  8. M. I. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961).
    [CrossRef]
  9. R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008).
    [CrossRef]
  10. R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008).
    [CrossRef]
  11. M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases (Springer, 2006), Vol.  1, pp. 488–490.
  12. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002), pp. 36–81.
  13. T. Kippeny, L. A. Swafford, and S. J. Rosenthal, “Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box,” J. Chem. Educ. 79, 1094–1100 (2002).
    [CrossRef]
  14. O. Stenzel, A. Stendal, M. Roder, and C. Von Borczyshowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
    [CrossRef]
  15. M. C. Beard, G. M. Turner, and C. A. Schmuttenmear, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2, 983–987 (2002).
    [CrossRef]
  16. C. Kittel, Introduction to Solid State Physics, 8th ed.(Wiley, 2004).
  17. R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, “Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: evolution from molecular to bulk semiconducting properties,” J. Chem. Phys. 82, 552–559 (1985).
    [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), pp. 114–130.
  19. M. Schäffner, X. Bao, and A. Penzkofer, “Principal optical constants measurement of uniaxial crystal CdSe in the wavelength region between 380 and 950 nm,” Appl. Opt. 31, 4546–4552 (1992).
    [CrossRef]
  20. Handbook of Optics, 3rd ed. (McGraw-Hill, 2008), Vol.  4.
  21. G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998).
    [CrossRef]
  22. Handbook on Physical Properties of Semiconductors: II-VI Compound Semiconductors, S.Adachi, ed. (Springer-Verlag, 2004), Vol.  3.
  23. R. Seoudi, M. M. Elokr, A. A. Shabaka, and A. Sobhi, “Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle,” Physica B 403, 152–158(2008).
    [CrossRef]
  24. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
    [CrossRef]
  25. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
    [CrossRef]
  26. R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects,” J. Chem. Phys. 131, 164706–164719(2009).
    [CrossRef]
  27. Frontiers of Science and Technology for the 21st Century: Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications, Z.L.Wang, Y.Liu, and Z.Zhang, eds. (Kluwer, 2003).
  28. M. S. Kurdoglyan, “Resonance intermolecular energy transfer near semiconductor nanoparticles,” Opt. Spectrosc. 91, 609–612 (2001).
    [CrossRef]
  29. M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states,” J. Chem. Phys. 96, 946–954 (1992).
    [CrossRef]

2009

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects,” J. Chem. Phys. 131, 164706–164719(2009).
[CrossRef]

2008

R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008).
[CrossRef]

R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008).
[CrossRef]

R. Seoudi, M. M. Elokr, A. A. Shabaka, and A. Sobhi, “Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle,” Physica B 403, 152–158(2008).
[CrossRef]

2004

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

2002

M. C. Beard, G. M. Turner, and C. A. Schmuttenmear, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2, 983–987 (2002).
[CrossRef]

T. Kippeny, L. A. Swafford, and S. J. Rosenthal, “Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box,” J. Chem. Educ. 79, 1094–1100 (2002).
[CrossRef]

2001

M. S. Kurdoglyan, “Resonance intermolecular energy transfer near semiconductor nanoparticles,” Opt. Spectrosc. 91, 609–612 (2001).
[CrossRef]

2000

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles,” Annu. Rev. Mater. Sci. 30, 545–610 (2000).
[CrossRef]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

1998

G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998).
[CrossRef]

1997

Y. Masumoto and K. Snobe, “Size-dependent energy levels of CdTe quantum dots,” Phys. Rev. B 56, 9734–9737(1997).
[CrossRef]

O. Stenzel, A. Stendal, M. Roder, and C. Von Borczyshowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

1993

G. P. Banfi, V. Degiorgio, and B. Speit, “Neutron scattering investigation of the structure of semiconductor‐doped glasses,” J. Appl. Phys. 74, 6925–6936 (1993).
[CrossRef]

1992

M. Schäffner, X. Bao, and A. Penzkofer, “Principal optical constants measurement of uniaxial crystal CdSe in the wavelength region between 380 and 950 nm,” Appl. Opt. 31, 4546–4552 (1992).
[CrossRef]

M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states,” J. Chem. Phys. 96, 946–954 (1992).
[CrossRef]

1991

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

1986

L. E. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Chem. Phys. 90, 2555–2560 (1986).
[CrossRef]

1985

R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, “Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: evolution from molecular to bulk semiconducting properties,” J. Chem. Phys. 82, 552–559 (1985).
[CrossRef]

1981

A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

1961

M. I. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961).
[CrossRef]

Alivisatos, A. P.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

Apte, S. K.

R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008).
[CrossRef]

Banfi, G. P.

G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998).
[CrossRef]

G. P. Banfi, V. Degiorgio, and B. Speit, “Neutron scattering investigation of the structure of semiconductor‐doped glasses,” J. Appl. Phys. 74, 6925–6936 (1993).
[CrossRef]

Bao, X.

Bawendi, M. G.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles,” Annu. Rev. Mater. Sci. 30, 545–610 (2000).
[CrossRef]

M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states,” J. Chem. Phys. 96, 946–954 (1992).
[CrossRef]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmear, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2, 983–987 (2002).
[CrossRef]

Brus, L. E.

M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states,” J. Chem. Phys. 96, 946–954 (1992).
[CrossRef]

L. E. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Chem. Phys. 90, 2555–2560 (1986).
[CrossRef]

R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, “Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: evolution from molecular to bulk semiconducting properties,” J. Chem. Phys. 82, 552–559 (1985).
[CrossRef]

Carroll, P. J.

M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states,” J. Chem. Phys. 96, 946–954 (1992).
[CrossRef]

Cooney, R. R.

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects,” J. Chem. Phys. 131, 164706–164719(2009).
[CrossRef]

Cui, Y.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

Degiorgio, V.

G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998).
[CrossRef]

G. P. Banfi, V. Degiorgio, and B. Speit, “Neutron scattering investigation of the structure of semiconductor‐doped glasses,” J. Appl. Phys. 74, 6925–6936 (1993).
[CrossRef]

Ekimo, A. I.

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

Ekimov, A. I.

A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Elokr, M. M.

R. Seoudi, M. M. Elokr, A. A. Shabaka, and A. Sobhi, “Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle,” Physica B 403, 152–158(2008).
[CrossRef]

Feeney, M.

R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008).
[CrossRef]

Gibson, J. M.

R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, “Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: evolution from molecular to bulk semiconducting properties,” J. Chem. Phys. 82, 552–559 (1985).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002), pp. 36–81.

Henneberger, F.

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

Hughes, S. M.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

Hull, R.

R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, “Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: evolution from molecular to bulk semiconducting properties,” J. Chem. Phys. 82, 552–559 (1985).
[CrossRef]

Ince, A. T.

R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008).
[CrossRef]

Ince, R.

R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008).
[CrossRef]

Jungnickel, V.

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

Kadavanich, A.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

Kagan, C. R.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles,” Annu. Rev. Mater. Sci. 30, 545–610 (2000).
[CrossRef]

Kale, B. B.

R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008).
[CrossRef]

Kambhampati, P.

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects,” J. Chem. Phys. 131, 164706–164719(2009).
[CrossRef]

Kippeny, T.

T. Kippeny, L. A. Swafford, and S. J. Rosenthal, “Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box,” J. Chem. Educ. 79, 1094–1100 (2002).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 8th ed.(Wiley, 2004).

Kulkarni, M. V.

R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008).
[CrossRef]

Kurdoglyan, M. S.

M. S. Kurdoglyan, “Resonance intermolecular energy transfer near semiconductor nanoparticles,” Opt. Spectrosc. 91, 609–612 (2001).
[CrossRef]

Leszczynski, J.

M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases (Springer, 2006), Vol.  1, pp. 488–490.

Li, J.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

Lifshitz, M. I.

M. I. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961).
[CrossRef]

Manna, L.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

Masumoto, Y.

Y. Masumoto and K. Snobe, “Size-dependent energy levels of CdTe quantum dots,” Phys. Rev. B 56, 9734–9737(1997).
[CrossRef]

Milliron, D. J.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

Murray, C. B.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles,” Annu. Rev. Mater. Sci. 30, 545–610 (2000).
[CrossRef]

Naik, S. D.

R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008).
[CrossRef]

Onushchenko, A. A.

A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Papadopoulos, M. G.

M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases (Springer, 2006), Vol.  1, pp. 488–490.

Peng, X.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

Penzkofer, A.

Puls, J.

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

Ricard, D.

G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998).
[CrossRef]

Roder, M.

O. Stenzel, A. Stendal, M. Roder, and C. Von Borczyshowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Rosenthal, S. J.

T. Kippeny, L. A. Swafford, and S. J. Rosenthal, “Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box,” J. Chem. Educ. 79, 1094–1100 (2002).
[CrossRef]

Rosetti, R.

R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, “Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: evolution from molecular to bulk semiconducting properties,” J. Chem. Phys. 82, 552–559 (1985).
[CrossRef]

Rossman, H.

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

Sadlej, A. J.

M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases (Springer, 2006), Vol.  1, pp. 488–490.

Sagar, D. M.

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects,” J. Chem. Phys. 131, 164706–164719(2009).
[CrossRef]

Schäffner, M.

Scher, E.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

Schmuttenmear, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmear, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2, 983–987 (2002).
[CrossRef]

Schulzgen, A.

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

Seoudi, R.

R. Seoudi, M. M. Elokr, A. A. Shabaka, and A. Sobhi, “Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle,” Physica B 403, 152–158(2008).
[CrossRef]

Sewall, S. L.

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects,” J. Chem. Phys. 131, 164706–164719(2009).
[CrossRef]

Shabaka, A. A.

R. Seoudi, M. M. Elokr, A. A. Shabaka, and A. Sobhi, “Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle,” Physica B 403, 152–158(2008).
[CrossRef]

Sinir, E.

R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008).
[CrossRef]

Slyozov, V. V.

M. I. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961).
[CrossRef]

Snobe, K.

Y. Masumoto and K. Snobe, “Size-dependent energy levels of CdTe quantum dots,” Phys. Rev. B 56, 9734–9737(1997).
[CrossRef]

Sobhi, A.

R. Seoudi, M. M. Elokr, A. A. Shabaka, and A. Sobhi, “Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle,” Physica B 403, 152–158(2008).
[CrossRef]

Sonawane, R. S.

R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008).
[CrossRef]

Speit, B.

G. P. Banfi, V. Degiorgio, and B. Speit, “Neutron scattering investigation of the structure of semiconductor‐doped glasses,” J. Appl. Phys. 74, 6925–6936 (1993).
[CrossRef]

Spiegelberg, C.

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

Stendal, A.

O. Stenzel, A. Stendal, M. Roder, and C. Von Borczyshowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Stenzel, O.

O. Stenzel, A. Stendal, M. Roder, and C. Von Borczyshowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Swafford, L. A.

T. Kippeny, L. A. Swafford, and S. J. Rosenthal, “Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box,” J. Chem. Educ. 79, 1094–1100 (2002).
[CrossRef]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmear, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2, 983–987 (2002).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), pp. 114–130.

Von Borczyshowski, C.

O. Stenzel, A. Stendal, M. Roder, and C. Von Borczyshowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Wang, L. W.

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

Wickham, J.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

Wilson, W. L.

M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states,” J. Chem. Phys. 96, 946–954 (1992).
[CrossRef]

Yang, W.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

Yukselici, M. H.

R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008).
[CrossRef]

Adv. Phys.

G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998).
[CrossRef]

Annu. Rev. Mater. Sci.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles,” Annu. Rev. Mater. Sci. 30, 545–610 (2000).
[CrossRef]

Appl. Opt.

Bull. Mater. Sci.

R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008).
[CrossRef]

J. Appl. Phys.

G. P. Banfi, V. Degiorgio, and B. Speit, “Neutron scattering investigation of the structure of semiconductor‐doped glasses,” J. Appl. Phys. 74, 6925–6936 (1993).
[CrossRef]

J. Chem. Educ.

T. Kippeny, L. A. Swafford, and S. J. Rosenthal, “Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box,” J. Chem. Educ. 79, 1094–1100 (2002).
[CrossRef]

J. Chem. Phys.

R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, “Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: evolution from molecular to bulk semiconducting properties,” J. Chem. Phys. 82, 552–559 (1985).
[CrossRef]

L. E. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Chem. Phys. 90, 2555–2560 (1986).
[CrossRef]

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects,” J. Chem. Phys. 131, 164706–164719(2009).
[CrossRef]

M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states,” J. Chem. Phys. 96, 946–954 (1992).
[CrossRef]

J. Phys. Chem. Solids

M. I. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961).
[CrossRef]

JETP Lett.

A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Nano Lett.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmear, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2, 983–987 (2002).
[CrossRef]

Nature

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[CrossRef]

D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004).
[CrossRef]

Opt. Commun.

R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008).
[CrossRef]

Opt. Spectrosc.

M. S. Kurdoglyan, “Resonance intermolecular energy transfer near semiconductor nanoparticles,” Opt. Spectrosc. 91, 609–612 (2001).
[CrossRef]

Phys. Rev. B

Y. Masumoto and K. Snobe, “Size-dependent energy levels of CdTe quantum dots,” Phys. Rev. B 56, 9734–9737(1997).
[CrossRef]

Physica B

R. Seoudi, M. M. Elokr, A. A. Shabaka, and A. Sobhi, “Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle,” Physica B 403, 152–158(2008).
[CrossRef]

Pure Appl. Opt.

O. Stenzel, A. Stendal, M. Roder, and C. Von Borczyshowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Semicond. Sci. Technol.

F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991).
[CrossRef]

Other

Schott Glass Filter Catalogue (2009).

M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases (Springer, 2006), Vol.  1, pp. 488–490.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002), pp. 36–81.

C. Kittel, Introduction to Solid State Physics, 8th ed.(Wiley, 2004).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), pp. 114–130.

Handbook of Optics, 3rd ed. (McGraw-Hill, 2008), Vol.  4.

Handbook on Physical Properties of Semiconductors: II-VI Compound Semiconductors, S.Adachi, ed. (Springer-Verlag, 2004), Vol.  3.

Frontiers of Science and Technology for the 21st Century: Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications, Z.L.Wang, Y.Liu, and Z.Zhang, eds. (Kluwer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorption spectra for samples 1–6 and the undoped substrate reference.

Fig. 2
Fig. 2

Michelson interferometer setup.

Fig. 3
Fig. 3

Refractive index for samples 1–6 versus their natural absorption wavelength.

Fig. 4
Fig. 4

Refractive index for samples 1–6 versus nanoparticle radius.

Fig. 5
Fig. 5

(a) Simulated dispersion curves for RG695 glass nanocrystalline impregnated samples (broadened refractive index scale to show sample 5). (b) Simulated dispersion curves for RG695 glass nanocrystalline impregnated samples (narrower refractive index scale to show samples 1, 2, 3, 4, and 6).

Fig. 6
Fig. 6

Simulated refractive index for samples 1–6 versus nanoparticle radius (at 632.8 nm ).

Fig. 7
Fig. 7

Comparison of experimental (solid curve) and simulated (dotted curve) values of refractive index on the same scale.

Fig. 8
Fig. 8

Overlap of the tail of the absorption line of sample 5 with the laser source wavelength at 632.8 nm (absorption coefficient curve of sample 5 has been linearized).

Tables (7)

Tables Icon

Table 1 Annealing Cycles For Nanoparticles in a Glass Matrix

Tables Icon

Table 2 Experimental Values of Refractive Index for Each Sample

Tables Icon

Table 3 Computation of Volume Fraction f c

Tables Icon

Table 4 Computation of Number of Electrons/Unit Volume in the Matrix a

Tables Icon

Table 5 Computation of Plasma Wavelengths

Tables Icon

Table 6 Resonance Wavelengths and Linewidths of Samples

Tables Icon

Table 7 Simulated Values of Refractive Index for Each Sample

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E R ( eV ) = E g 0.144 R ( nm ) + 0.377 μ * [ R ( nm ) ] 2 .
Δ m = [ t / λ n a ( 1 n ) ] θ i 2 + [ t / λ n a ( 1 n ) ] n 2 θ i 4 .
y = A x 2 + A n 2 x 4 .
n 2 ( ω ) = 1 + N e q e 2 m * ε i f i ω o 2 ω 2 + i γ ω ,
ω p 2 = N e q e 2 / ε m * ,
n 2 ( ω ) = 1 + ω p 2 f i ω o 2 ω 2 + i γ ω .
n 2 ( ω ) = 1 + ω p 2 ω o 2 ω 2 + i γ ω .
n 2 ( ω ) = 1 + 1 λ p 2 1 ( 1 λ o 2 1 λ 2 ) + i γ / λ ,
λ p 2 = 2 π c ε m * / N e q e 2 .
Re { n ( λ ) } = n M [ 1 + 1 / λ mo 2 1 / λ 2 λ p 2 [ ( 1 / λ mo 2 1 / λ 2 ) 2 + { δ / ( λ λ mo 2 ) } 2 ] ] 1 / 2 ,
C abs ( λ ) = 8 π 2 R 3 λ Im [ ε 1 ε + 2 ] ,
C abs ( λ ) = 8 π 2 R 3 λ Im [ ε com ε M ε com + 2 ε M ] ,
ε com = ε 1 + i ε 2 ,
n ˜ = n i k .
α com = C abs ( λ ) N ,
N = f c 4 / 3 π R 3 ,
α com = 4.5 ε M ( ε 1 + 2 ε M ) 2 + ε 2 2 f c n ( λ ) α cryst ,
N e = N × N e ( NP ) .

Metrics