Abstract

The possibility for achieving optical performance of objectives, including a minimum amount of diffractive lenses, comparable to optical performance of multiple-lens conventional objectives for nanolithography, is considered. The problem of chromatism connected with using excimer lasers is solved by applying aspheric substrates that help to reduce both axial color and spherochromatic aberration.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Bruning, “Optical lithography: 40 years and holding,” Proc. SPIE 6520, 652004 (2007).
    [CrossRef]
  2. A. B. Bel’skii, M. A. Gan, I. A. Mironov, and R. P. Seisyan, “Prospects for the development of optical systems for nanolithography,” J. Opt. Technol. 76, 496–503 (2009).
    [CrossRef]
  3. S. T. Bobrov, G. I. Greisukh, and Y. G. Turkevich, Optics of Diffractive Elements and Systems (in Russian) (Leningrad, 1986), Section 4, pp. 122–132.
  4. G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Section 7, pp. 232–240.
  5. http://www.zemax.com.
  6. D.Basting and G.Marowsky, Excimer Laser Technology (Springer, 2005), pp. 94–97.
  7. G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive–refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45, 6137–6141 (2006).
    [CrossRef] [PubMed]
  8. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 8.8.2, p. 491.
  9. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38, 1295–1301 (1999).
    [CrossRef]
  10. V. P. Korolkov and A. G. Poleshchuk, “Fabrication and certification of high-quality and larger-aperture CGHs for optical testing,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OFTuB2.

2009 (1)

2007 (1)

J. H. Bruning, “Optical lithography: 40 years and holding,” Proc. SPIE 6520, 652004 (2007).
[CrossRef]

2006 (1)

1999 (1)

Bel’skii, A. B.

Bobrov, S. T.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Section 7, pp. 232–240.

S. T. Bobrov, G. I. Greisukh, and Y. G. Turkevich, Optics of Diffractive Elements and Systems (in Russian) (Leningrad, 1986), Section 4, pp. 122–132.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 8.8.2, p. 491.

Bruning, J. H.

J. H. Bruning, “Optical lithography: 40 years and holding,” Proc. SPIE 6520, 652004 (2007).
[CrossRef]

Cherkashin, V. V.

Churin, E. G.

Ezhov, E. G.

Gan, M. A.

Greisukh, G. I.

G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive–refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45, 6137–6141 (2006).
[CrossRef] [PubMed]

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Section 7, pp. 232–240.

S. T. Bobrov, G. I. Greisukh, and Y. G. Turkevich, Optics of Diffractive Elements and Systems (in Russian) (Leningrad, 1986), Section 4, pp. 122–132.

Kharissov, A. A.

Kiryanov, A. V.

Kiryanov, V. P.

Kokarev, S. A.

Korolkov, V. P.

A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38, 1295–1301 (1999).
[CrossRef]

V. P. Korolkov and A. G. Poleshchuk, “Fabrication and certification of high-quality and larger-aperture CGHs for optical testing,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OFTuB2.

Koronkevich, V. P.

Mironov, I. A.

Poleshchuk, A. G.

A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38, 1295–1301 (1999).
[CrossRef]

V. P. Korolkov and A. G. Poleshchuk, “Fabrication and certification of high-quality and larger-aperture CGHs for optical testing,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OFTuB2.

Seisyan, R. P.

Stepanov, S. A.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Section 7, pp. 232–240.

Stepanov,, S. A.

Turkevich, Y. G.

S. T. Bobrov, G. I. Greisukh, and Y. G. Turkevich, Optics of Diffractive Elements and Systems (in Russian) (Leningrad, 1986), Section 4, pp. 122–132.

Verhoglyad, A. G.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 8.8.2, p. 491.

Appl. Opt. (2)

J. Opt. Technol. (1)

Proc. SPIE (1)

J. H. Bruning, “Optical lithography: 40 years and holding,” Proc. SPIE 6520, 652004 (2007).
[CrossRef]

Other (6)

S. T. Bobrov, G. I. Greisukh, and Y. G. Turkevich, Optics of Diffractive Elements and Systems (in Russian) (Leningrad, 1986), Section 4, pp. 122–132.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Section 7, pp. 232–240.

http://www.zemax.com.

D.Basting and G.Marowsky, Excimer Laser Technology (Springer, 2005), pp. 94–97.

V. P. Korolkov and A. G. Poleshchuk, “Fabrication and certification of high-quality and larger-aperture CGHs for optical testing,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OFTuB2.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 8.8.2, p. 491.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Three-lens proportional purely diffractive objective: 1, 2, 4, DLs; 3, aperture stop.

Fig. 2
Fig. 2

Five-lens confocal purely diffractive objective: 1, 2, 4, 5, 6, DLs; 3, aperture stop.

Fig. 3
Fig. 3

Five-component confocal diffractive–refractive objective: 1, 2, 4, 5, 6, DLs on quartz aspherical substrates; 3, aperture stop.

Tables (4)

Tables Icon

Table 1 Lens Listing for Five-Lens Purely Diffractive Objective a

Tables Icon

Table 2 DL Phase Coefficients a

Tables Icon

Table 3 Lens Listing for Five-Component Confocal Diffractive–Refractive Objective a

Tables Icon

Table 4 DL Phase Coefficients a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ϕ D 1 = 2 ( 1 V ) L ,
ϕ D 3 = 2 ( 1 V ) V L ,
d 1 = d 2 = 1 / ϕ D 1 ,
d 3 = d 4 = 1 / ϕ D 3 .
ψ = m j = 1 A j ρ 2 j ,
ϕ D = A 1 λ m / π .
A 2 = π 4 λ ( ϕ D 1 3 + ϕ D 3 3 ) ,
A 3 = π 8 λ ( ϕ D 1 5 + ϕ D 3 5 ) .
Δ s = 1 α 2 k = 1 K ( ϕ D k ν D + ϕ R k ν R ) h k 2 ,
ν D = λ ¯ / ( λ min λ max ) ,
ν R = ( n λ ¯ 1 ) / ( n λ min n λ max ) ,
Δ s DLR = 1 A 2 A 2 λ ¯ ,

Metrics