Abstract

Terahertz (THz) reflectivities of a variety of metal-coated mirrors were measured. Gold, silver, and aluminum coatings were tested and compared. It was found that all types of optical metal-coated mirrors perform equally well as THz reflectors.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Chap. 13.
  2. A. J. Gatesman, R. H. Giles, and J. Waldman, “High-precision reflectometer for submillimeter wavelengths,” J. Opt. Soc. Am. B 12, 212–219 (1995).
    [CrossRef]
  3. V. V. Parshin and S. E. Myasnikova, “Metals reflectivity at frequencies 100–360 GHz,” in 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics (IEEE, 2006), pp. 569–570.
    [CrossRef]
  4. J. J. Bock, M. K. Parikh, M. L. Fischer, and A. E. Lange, “Emissivity measurements of reflective surfaces at near-millimeter wavelengths,” Appl. Opt. 34, 4812–4816 (1995).
    [CrossRef] [PubMed]
  5. K. L. F. Bane, G. Stupakov, and J. J. Tu, “Reflectivity measurements for copper and aluminum in the far IR and the resistive wall impedance in the LCLS undulator,” in Proceedings of EPAC 2006, Edinburgh, Scotland (2006), pp. 2955–2957.
  6. L. Harris and P. Fowler, “Absorptance of gold in the far infrared,” J. Opt. Soc. Am. 51, 164–167 (1961).
    [CrossRef]
  7. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), Chap. 5.
  8. E. Maxwell, “Conductivity of metallic surfaces at microwave frequencies,” J. Appl. Phys. 18, 629–638 (1947).
    [CrossRef]
  9. Zh. Xiaoxia, P. Wei, and S. Lucyszyn, “New theoretical modeling of surface resistance in normal metals at terahertz frequencies,” Int. J. Infrared Milli. Waves 25, 1611–1620(2004).
    [CrossRef]

2004

Zh. Xiaoxia, P. Wei, and S. Lucyszyn, “New theoretical modeling of surface resistance in normal metals at terahertz frequencies,” Int. J. Infrared Milli. Waves 25, 1611–1620(2004).
[CrossRef]

1995

1961

1947

E. Maxwell, “Conductivity of metallic surfaces at microwave frequencies,” J. Appl. Phys. 18, 629–638 (1947).
[CrossRef]

Bane, K. L. F.

K. L. F. Bane, G. Stupakov, and J. J. Tu, “Reflectivity measurements for copper and aluminum in the far IR and the resistive wall impedance in the LCLS undulator,” in Proceedings of EPAC 2006, Edinburgh, Scotland (2006), pp. 2955–2957.

Bock, J. J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Chap. 13.

Fischer, M. L.

Fowler, P.

Gatesman, A. J.

Giles, R. H.

Harris, L.

Lange, A. E.

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), Chap. 5.

Lucyszyn, S.

Zh. Xiaoxia, P. Wei, and S. Lucyszyn, “New theoretical modeling of surface resistance in normal metals at terahertz frequencies,” Int. J. Infrared Milli. Waves 25, 1611–1620(2004).
[CrossRef]

Maxwell, E.

E. Maxwell, “Conductivity of metallic surfaces at microwave frequencies,” J. Appl. Phys. 18, 629–638 (1947).
[CrossRef]

Myasnikova, S. E.

V. V. Parshin and S. E. Myasnikova, “Metals reflectivity at frequencies 100–360 GHz,” in 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics (IEEE, 2006), pp. 569–570.
[CrossRef]

Parikh, M. K.

Parshin, V. V.

V. V. Parshin and S. E. Myasnikova, “Metals reflectivity at frequencies 100–360 GHz,” in 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics (IEEE, 2006), pp. 569–570.
[CrossRef]

Stupakov, G.

K. L. F. Bane, G. Stupakov, and J. J. Tu, “Reflectivity measurements for copper and aluminum in the far IR and the resistive wall impedance in the LCLS undulator,” in Proceedings of EPAC 2006, Edinburgh, Scotland (2006), pp. 2955–2957.

Tu, J. J.

K. L. F. Bane, G. Stupakov, and J. J. Tu, “Reflectivity measurements for copper and aluminum in the far IR and the resistive wall impedance in the LCLS undulator,” in Proceedings of EPAC 2006, Edinburgh, Scotland (2006), pp. 2955–2957.

Waldman, J.

Wei, P.

Zh. Xiaoxia, P. Wei, and S. Lucyszyn, “New theoretical modeling of surface resistance in normal metals at terahertz frequencies,” Int. J. Infrared Milli. Waves 25, 1611–1620(2004).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Chap. 13.

Xiaoxia, Zh.

Zh. Xiaoxia, P. Wei, and S. Lucyszyn, “New theoretical modeling of surface resistance in normal metals at terahertz frequencies,” Int. J. Infrared Milli. Waves 25, 1611–1620(2004).
[CrossRef]

Appl. Opt.

Int. J. Infrared Milli. Waves

Zh. Xiaoxia, P. Wei, and S. Lucyszyn, “New theoretical modeling of surface resistance in normal metals at terahertz frequencies,” Int. J. Infrared Milli. Waves 25, 1611–1620(2004).
[CrossRef]

J. Appl. Phys.

E. Maxwell, “Conductivity of metallic surfaces at microwave frequencies,” J. Appl. Phys. 18, 629–638 (1947).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Other

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Chap. 13.

V. V. Parshin and S. E. Myasnikova, “Metals reflectivity at frequencies 100–360 GHz,” in 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics (IEEE, 2006), pp. 569–570.
[CrossRef]

K. L. F. Bane, G. Stupakov, and J. J. Tu, “Reflectivity measurements for copper and aluminum in the far IR and the resistive wall impedance in the LCLS undulator,” in Proceedings of EPAC 2006, Edinburgh, Scotland (2006), pp. 2955–2957.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic drawing of the THz beam path for reflectivity measurements.

Fig. 2
Fig. 2

Normalized reflection from tested mirrors. Mirror 1AuS used as a “standard”. The values are the mean of eight measurements; error bars correspond to standard deviation.

Tables (1)

Tables Icon

Table 1 Properties of Mirrors Tested

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = 1 2 ( ν / σ ) 1 / 2 ,
δ = ( π μ ν σ ) 1 / 2 ,

Metrics