Abstract

While photoacoustic methods offer significant promise for high-resolution optical contrast imaging, quantification has thus far proved challenging. In this paper, a noniterative reconstruction technique for producing quantitative photoacoustic images of both absorption and scattering perturbations is introduced for the case when the optical properties of the turbid background are known and multiple optical illumination locations are used. Through theoretical developments and computational examples, it is demonstrated that multiple-illumination photoacoustic tomography (MI-PAT) can alleviate ill- posedness due to absorption-scattering nonuniqueness and produce quantitative high-resolution reconstructions of optical absorption, scattering, and Gruneisen parameter distributions. While numerical challenges still exist, we show that the linearized MI-PAT framework that we propose has orders of magnitude improved condition number compared with CW diffuse optical tomography.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  2. B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distribution in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875(2006).
    [CrossRef] [PubMed]
  3. Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101(2006).
    [CrossRef]
  4. J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Phys. Rev. E 71, 031912(2005).
    [CrossRef]
  5. T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
    [CrossRef]
  6. B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A 25, 2347–2356 (2008).
    [CrossRef]
  7. L. Yin, Q. Wang, Q. Z. Zhang, and H. B. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556–2558 (2007).
    [CrossRef] [PubMed]
  8. Z. Yuan, Q. Wang, and H. B. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized newton method,” Opt. Express 15, 18076–18081(2007).
    [CrossRef] [PubMed]
  9. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).
    [CrossRef]
  10. Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).
    [CrossRef] [PubMed]
  11. B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
    [CrossRef]
  12. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (2005).
    [CrossRef]
  13. M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y(2010).
    [CrossRef]
  14. S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
    [CrossRef]
  15. J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008)
    [CrossRef] [PubMed]
  16. S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34, 299–308(2008).
    [CrossRef]
  17. J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
    [CrossRef] [PubMed]
  18. S. H. Wang, C. W. Wei, S. H. Jee, and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
    [CrossRef]
  19. M. Pramanik and L. H. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024(2009).
    [CrossRef] [PubMed]
  20. R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng. 42, 828–839 (1995).
    [CrossRef] [PubMed]
  21. R. Maass-Moreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part 1. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521(1996).
    [CrossRef] [PubMed]
  22. R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, “Noninvasive real-time multipoint temperature control for ultrasound phased array treatments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1063–1073 (1996).
    [CrossRef]
  23. S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle,” Magn. Reson. Med. 39, 198–203 (1998).
    [CrossRef] [PubMed]
  24. P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
    [PubMed]
  25. R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009).
    [CrossRef]
  26. J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009).
    [CrossRef] [PubMed]
  27. G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inv. Prob. 26, 085010 (2010).
    [CrossRef]
  28. R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt. 49, 3566–3572 (2010).
    [CrossRef] [PubMed]
  29. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884(1998).
    [CrossRef]
  30. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  31. L. V. Wang, Biomedical Optics: Principles and Imaging(Wiley, 2007).
  32. H. Gao, H. Zhao, and Sl Osher, “Quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2011), Vol.  11–28.
  33. S. Moskow and J. C. Schotland, “Numerical studies of the inverse Born series for diffuse waves,” Inv. Prob. 25, 095007(2009).
    [CrossRef]
  34. H. Gao, H. Zhao, and S. Osher, “Bregman methods in quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2010), Vol.  10–42.

2010 (4)

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y(2010).
[CrossRef]

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inv. Prob. 26, 085010 (2010).
[CrossRef]

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).
[CrossRef] [PubMed]

R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt. 49, 3566–3572 (2010).
[CrossRef] [PubMed]

2009 (8)

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).
[CrossRef]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
[CrossRef]

S. Moskow and J. C. Schotland, “Numerical studies of the inverse Born series for diffuse waves,” Inv. Prob. 25, 095007(2009).
[CrossRef]

R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009).
[CrossRef]

J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009).
[CrossRef] [PubMed]

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
[CrossRef]

S. H. Wang, C. W. Wei, S. H. Jee, and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[CrossRef]

M. Pramanik and L. H. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024(2009).
[CrossRef] [PubMed]

2008 (4)

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008)
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34, 299–308(2008).
[CrossRef]

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A 25, 2347–2356 (2008).
[CrossRef]

2007 (2)

2006 (4)

B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distribution in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875(2006).
[CrossRef] [PubMed]

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101(2006).
[CrossRef]

2005 (2)

J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Phys. Rev. E 71, 031912(2005).
[CrossRef]

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (2005).
[CrossRef]

1998 (3)

S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle,” Magn. Reson. Med. 39, 198–203 (1998).
[CrossRef] [PubMed]

P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
[PubMed]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884(1998).
[CrossRef]

1996 (2)

R. Maass-Moreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part 1. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521(1996).
[CrossRef] [PubMed]

R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, “Noninvasive real-time multipoint temperature control for ultrasound phased array treatments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1063–1073 (1996).
[CrossRef]

1995 (1)

R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng. 42, 828–839 (1995).
[CrossRef] [PubMed]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Aglyamov, S. R.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34, 299–308(2008).
[CrossRef]

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008)
[CrossRef] [PubMed]

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Arridge, S. R.

Bagchi, S.

Bal, G.

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inv. Prob. 26, 085010 (2010).
[CrossRef]

Banerjee, B.

Beard, P. C.

Botnar, R.

P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
[PubMed]

Bronskill, M. J.

S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle,” Magn. Reson. Med. 39, 198–203 (1998).
[CrossRef] [PubMed]

Cain, C. A.

R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, “Noninvasive real-time multipoint temperature control for ultrasound phased array treatments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1063–1073 (1996).
[CrossRef]

Chen, X.

R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009).
[CrossRef]

Chen, X. H.

J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009).
[CrossRef] [PubMed]

Cox, B. T.

Damianou, C. A.

R. Maass-Moreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part 1. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521(1996).
[CrossRef] [PubMed]

Debatin, J. F.

P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
[PubMed]

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Dubno, B.

P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
[PubMed]

Ebbini, E. S.

R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, “Noninvasive real-time multipoint temperature control for ultrasound phased array treatments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1063–1073 (1996).
[CrossRef]

R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng. 42, 828–839 (1995).
[CrossRef] [PubMed]

Emelianov, S. Y.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34, 299–308(2008).
[CrossRef]

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008)
[CrossRef] [PubMed]

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Englmeier, K. H.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
[CrossRef]

Erpelding, T. N.

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y(2010).
[CrossRef]

Esenaliev, R. O.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (2005).
[CrossRef]

Gao, H.

H. Gao, H. Zhao, and Sl Osher, “Quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2011), Vol.  11–28.

H. Gao, H. Zhao, and S. Osher, “Bregman methods in quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2010), Vol.  10–42.

Gazelle, G. S.

P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
[PubMed]

Graham, S. J.

S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle,” Magn. Reson. Med. 39, 198–203 (1998).
[CrossRef] [PubMed]

Guo, Z.

Henkelman, R. M.

S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle,” Magn. Reson. Med. 39, 198–203 (1998).
[CrossRef] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Hu, S.

Jankovic, L.

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y(2010).
[CrossRef]

Jee, S. H.

S. H. Wang, C. W. Wei, S. H. Jee, and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[CrossRef]

Jetzfellner, T.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
[CrossRef]

Jiang, H. B.

Jiang, Y.

R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009).
[CrossRef]

J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009).
[CrossRef] [PubMed]

Johnston, K.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

Karpiouk, A. B.

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Kostli, K. P.

Larin, K. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (2005).
[CrossRef]

Larina, I. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (2005).
[CrossRef]

Larson, T.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

Laufer, J. G.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
[CrossRef]

Li, P. C.

S. H. Wang, C. W. Wei, S. H. Jee, and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[CrossRef]

Lionheart, W. R. B.

Ma, T.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

Maass-Moreno, R.

R. Maass-Moreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part 1. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521(1996).
[CrossRef] [PubMed]

Mallidi, S.

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Mathewson, K.

R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009).
[CrossRef]

J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009).
[CrossRef] [PubMed]

Milner, T. E.

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008)
[CrossRef] [PubMed]

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

Moskow, S.

S. Moskow and J. C. Schotland, “Numerical studies of the inverse Born series for diffuse waves,” Inv. Prob. 25, 095007(2009).
[CrossRef]

Ntziachristos, V.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
[CrossRef]

J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Phys. Rev. E 71, 031912(2005).
[CrossRef]

Osher, S.

H. Gao, H. Zhao, and S. Osher, “Bregman methods in quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2010), Vol.  10–42.

Osher, Sl

H. Gao, H. Zhao, and Sl Osher, “Quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2011), Vol.  11–28.

Park, S.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Pramanik, M.

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y(2010).
[CrossRef]

M. Pramanik and L. H. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024(2009).
[CrossRef] [PubMed]

Ranasinghesagara, J.

R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009).
[CrossRef]

Ranasinghesagara, J. C.

J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009).
[CrossRef] [PubMed]

Razansky, D.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
[CrossRef]

Ripoll, J.

J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Phys. Rev. E 71, 031912(2005).
[CrossRef]

Rosenthal, A.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
[CrossRef]

Roy, D.

Rubin, J. M.

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Schotland, J. C.

S. Moskow and J. C. Schotland, “Numerical studies of the inverse Born series for diffuse waves,” Inv. Prob. 25, 095007(2009).
[CrossRef]

Schulz, R.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
[CrossRef]

Schweiger, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Scott, W. G.

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Seip, R.

R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, “Noninvasive real-time multipoint temperature control for ultrasound phased array treatments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1063–1073 (1996).
[CrossRef]

R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng. 42, 828–839 (1995).
[CrossRef] [PubMed]

Sethuraman, S.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34, 299–308(2008).
[CrossRef]

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Shah, J.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008)
[CrossRef] [PubMed]

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Smalling, R.

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Smalling, R. W.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34, 299–308(2008).
[CrossRef]

Sokolov, K.

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008)
[CrossRef] [PubMed]

Sokolov, L.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

Steiner, P.

P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
[PubMed]

Uhlmann, G.

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inv. Prob. 26, 085010 (2010).
[CrossRef]

VanBaren, P.

R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, “Noninvasive real-time multipoint temperature control for ultrasound phased array treatments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1063–1073 (1996).
[CrossRef]

Vasu, R. M.

Wang, L. H. V.

M. Pramanik and L. H. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024(2009).
[CrossRef] [PubMed]

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Wang, L. V.

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010).
[CrossRef] [PubMed]

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y(2010).
[CrossRef]

L. V. Wang, Biomedical Optics: Principles and Imaging(Wiley, 2007).

Wang, Q.

Wang, S. H.

S. H. Wang, C. W. Wei, S. H. Jee, and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[CrossRef]

Wei, C. W.

S. H. Wang, C. W. Wei, S. H. Jee, and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[CrossRef]

Xu, M. H.

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Yin, L.

Yuan, Z.

Zemp, R. J.

R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt. 49, 3566–3572 (2010).
[CrossRef] [PubMed]

J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009).
[CrossRef] [PubMed]

R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009).
[CrossRef]

Zhang, Q. Z.

Zhao, H.

H. Gao, H. Zhao, and Sl Osher, “Quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2011), Vol.  11–28.

H. Gao, H. Zhao, and S. Osher, “Bregman methods in quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2010), Vol.  10–42.

Zimmermann, G. G.

P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101(2006).
[CrossRef]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng. 42, 828–839 (1995).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, “Noninvasive real-time multipoint temperature control for ultrasound phased array treatments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1063–1073 (1996).
[CrossRef]

Inv. Prob. (2)

S. Moskow and J. C. Schotland, “Numerical studies of the inverse Born series for diffuse waves,” Inv. Prob. 25, 095007(2009).
[CrossRef]

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inv. Prob. 26, 085010 (2010).
[CrossRef]

J. Acoust. Soc. Am. (1)

R. Maass-Moreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part 1. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521(1996).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009).
[CrossRef] [PubMed]

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008)
[CrossRef] [PubMed]

J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008).
[CrossRef] [PubMed]

M. Pramanik and L. H. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024(2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Phys. D (1)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (2005).
[CrossRef]

Magn. Reson. Med. (1)

S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle,” Magn. Reson. Med. 39, 198–203 (1998).
[CrossRef] [PubMed]

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E (1)

J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Phys. Rev. E 71, 031912(2005).
[CrossRef]

Proc. IEEE Ultrason. Symp. (1)

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006).
[CrossRef]

Proc. SPIE (4)

S. H. Wang, C. W. Wei, S. H. Jee, and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009).
[CrossRef]

M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y(2010).
[CrossRef]

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009).
[CrossRef]

R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009).
[CrossRef]

Radiology (1)

P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998).
[PubMed]

Rev. Sci. Instrum. (1)

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Ultrasound Med. Biol. (1)

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34, 299–308(2008).
[CrossRef]

Other (3)

L. V. Wang, Biomedical Optics: Principles and Imaging(Wiley, 2007).

H. Gao, H. Zhao, and Sl Osher, “Quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2011), Vol.  11–28.

H. Gao, H. Zhao, and S. Osher, “Bregman methods in quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2010), Vol.  10–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Given heating distribution (c) = (f) can be produced by the { μ a , μ s } distributions A  { ( a ) , ( b ) } or B  { ( d ) , ( e ) } . Because two pairs of absorption and scattering distributions, A and B, can produce the same heating distribution for a given optical illumination geometry, approaches attempting to reconstruct optical properties using single-illumination PAT are ill-posed due to nonuniqueness. However, when illuminated by a spatially distinct alternate optical source (source 2), the heating distribution from A is distinct from that of B. The error image (difference) between (g) and (h) is shown in (i). This example demonstrates the potential to remedy nonuniqueness using multiple sources.

Fig. 2
Fig. 2

Light propagation geometry.

Fig. 3
Fig. 3

(a) True 2D μ a distribution. (b) True 2D diffusion coefficient distribution. (c) True 2D Grueneisen parameter distribution. (d) Normalized fluence distribution from source s 1 . (e) Normalized fluence distribution from source s 2 . (f) Fluence perturbation from source s 1 due to only absorption perturbation. (g) Fluence perturbation from source s 1 with the presence of only diffusion coefficient perturbation. (h) Photoacoustic image with source s 1 . (i) Photoacoustic image normalized by the fluence distribution Φ 0 due to source s 1 , where Φ 0 is calculated under the assumption of a homogeneous medium. If the Gruneisen parameter were constant, this would represent one approximation to the absorption map. This estimate exhibits unacceptable errors. (j) Reconstructed image of the optical absorption map using our multiple-source photoacoustic inversion technique. (k) Reconstructed image of the diffusion coefficient. (l) Reconstructed image of the Grueneisen parameter.

Fig. 4
Fig. 4

Simulation configurations. (a)–(c) two, four, and eight sources located around the object for MI-PAT and DOT imaging simulation. (d) Detector distribution for DOT imaging when using two, four, and eight sources. (e) 20 source–detector pairs positioned on top of the object for DOT. (f) 80 source–detector pairs around the tissue. For all configurations, sources and transducers are positioned 3 mm back from the object surfaces.

Fig. 5
Fig. 5

Singular value spectra (normalized by the largest value) of the matrix Q used in the example of Fig. 3 for recovering both absorption and scattering perturbations. For n = 2 sources, the number of singular values is underdetermined. Matrix conditioning improves when using more sources. The MI-PAT method is better conditioned than DOT imaging.

Tables (1)

Tables Icon

Table 1 Condition Number for Different Configurations

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

h i ( r ) = μ a ( r ) Φ ( r , r s i ) ,
p i ( r ) = Γ ( r ) μ a ( r ) Φ ( r , r s i ) ,
p ^ i ( r ) = O { g i ( r d , t ) } ,
p ^ i ( r ) = H { p i ( r ) } + n = H { Γ ( r ) μ a ( r ) Φ i ( r ) } + n
Φ ( r j , r s i ) = Φ 0 ( r j , r s i ) + Φ SC ( r j , r s i ) ,
Φ SC ( r j , r s i ) = δ μ a ( r ) D 0 G 0 ( r j , r ) Φ ( r , r s i ) d r + δ D ( r ) D 0 G 0 ( r j , r ) · Φ ( r , r s i ) d r ,
Φ SC ( r j , r s i ) = n W { i j } n a δ μ a ( r n ) + n W { i j } n s δ D ( r n )
W { i j } n a = G 0 ( r j , r n ) Φ 0 ( r n , r s i ) Δ V / D 0 ,
W { i j } n s = G 0 ( r j , r n ) · Φ 0 ( r n , r s i ) Δ V / D 0 ,
Φ SC = Wu ,
p ^ i ( r j ) p ^ ( r j ) H { Φ i ( r j ) Γ ( r j ) μ a ( r j ) } H { Φ ( r j ) Γ ( r j ) μ a ( r j ) } .
p ^ i ( r ) Φ i ( r ) H { Γ ( r ) μ a ( r ) } .
p ^ i ( r j ) p ^ ( r j ) Φ i ( r j ) Φ ( r j ) .
p ^ i ( r j ) p ^ ( r j ) Φ 0 ( r j , r s i ) + Φ SC ( r j , r s i ) Φ 0 ( r j , r s ) + Φ SC ( r j , r s ) .
n [ p ^ i ( r j ) W { j } n p ^ ( r j ) W { i j } n ] u ( r n ) = p ^ ( r j ) Φ 0 ( r j , r s i ) p ^ i ( r j ) Φ 0 ( r j , r s ) .
Qu = b ,
Γ ^ ( r ) = i p i ^ ( r ) μ a ^ ( r ) i Φ i ^ ( r ) ,
Φ ( r , t ) t + c μ a Φ ( r , t ) c · [ D Φ ( r , t ) ] = q ( r , t ) ,
μ eff 2 Φ 0 ( r ) 2 Φ 0 ( r ) = A c D δ ( r ) ,
[ k 2 + μ eff 2 ] Φ 0 ( k ) = A c D ,
Φ 0 ( r ) = A exp ( μ eff r ) 4 π c D r ,
Φ 0 ( r ) = 1 2 π A c D K 0 ( μ eff r ) ,
G 0 ( r , r ) = exp ( μ eff | r r | ) 4 π | r r | ,
G 0 ( r , r ) = 1 2 π K 0 ( μ eff | r r | ) ,
G 0 ( r j , r ) = r ^ G 0 ( r j , r ) r .
K 0 ( μ eff r ) r = μ eff K 1 ( μ eff r ) .
W { i j } n s = 1 4 π 2 A μ eff 2 c D 0 K 1 ( μ eff | r j r n | ) × K 1 ( μ eff | r n r s i | ) ( r j r n ) · ( r n r s i ) | r j r n | | r n r s i | Δ V D 0 .

Metrics