Abstract

The interfacial fluid thickness (IFT) concept was used to develop a harmonic-mean refractive index gradient magnitude threshold to retrieve the high refractive index gradient regions of an aerodynamically heated window. The retrieved high-gradient regions were used to reconstruct the refractive index field of the window. The numerical three-dimensional optical distortion evaluation was conducted for both the reconstructed and the original refractive index fields of the window using the ray-tracing program based on a recursive algorithm. Wave aberration results show that the methodology based on the IFT concept reduces the refractive index information required to capture the essential optical distortion of the window. The method can also be used for numerically evaluating the optical distortion of the window.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging quality evaluation of aerodynamically heated optical dome using ray tracing

Haosu Xiao and Zhigang Fan
Appl. Opt. 49(27) 5049-5058 (2010)

Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems

Haosu Xiao, Baojun Zuo, Yi Tian, Wang Zhang, Chenglong Hao, Chaofeng Liu, Qi Li, Fan Li, Li Zhang, and Zhigang Fan
Appl. Opt. 51(36) 8625-8636 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription