Abstract

An all-fiber magneto-optic Sagnac interferometer (AFMOSI) utilizing intrinsic Faraday effects in highly nonlinear fibers (HNLFs) is presented for the first time (to our knowledge). The performance of the AFMOSI was investigated theoretically by use of the transfer matrix approach. The theoretical results were verified by the experiment employing an all-fiber magnetic-optic cell that consists of a 30m long HNLF and a 92mm diameter toroid coil. Our experiments show that, when the linear birefringence of the AFMOSI is adjusted to 0, the change of the transmission can be over 10dB as the magnetic induction B increases from 0 to 180Gs. The sensitivity of the AFMOSI is determined by the coupling ratio of the fiber coupler, the loss of the loop, and the length of the HNLF. Most importantly, the linear birefringence of the AFMOSI can be obtained by evaluating its performance of magnetic field response. This is very useful for studying the influence of the linear birefringence on the performance of a nonlinear optical loop mirror that is controlled by the Faraday effect.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Maeda and M. Susaki, “Magnetostatic wave propagation in yttrium-iron-garnet with microfabricated surfaces,” IEEE Trans. Magn. 42, 3096–3098 (2006).
    [CrossRef]
  2. C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
    [CrossRef]
  3. F. Wen, B.-J. Wu, and K. Qiu, “Ground effects on magneto-optic Bragg cells,” Chinese Science Bulletin 53, 2753–2757 (2008).
    [CrossRef]
  4. Thorlabs isolators, http://www.thorlabs.hk/NewGroupPage9.cfm?ObjectGroup_ID=3084.
  5. C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14, 616–624 (2008).
    [CrossRef]
  6. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
    [CrossRef]
  7. A. Hirano, T. Kataoka, S. Kuwahara, M. Asobe, and Y. Yamabayashi, “All-optical limiter circuit based on four-wave mixing in optical fibres,” Electron. Lett. 34, 1410–1411(1998).
    [CrossRef]
  8. B.-J. Wu, X. Liu, and K. Qiu, “Characteristics of magneto-optic fiber Bragg gratings for use in optical signal processing,” Opt. Fiber Technol. 15, 165–171 (2009).
    [CrossRef]
  9. K. Qiu, B.-J. Wu, and F. Wen, “Nonlinear propagation of circularly polarized light in magneto-optic fiber Bragg gratings,” Acta Phys. Sin. 58, 1726–1730 (2009).
  10. J. L. Cruz, M. V. Andres, and M. A. Hernandez, “Faraday effect in standard optical fibers: dispersion of the effective Verdet constant,” Appl. Opt. 35, 922–927 (1996).
    [CrossRef] [PubMed]
  11. S. Kemmet, M. Mina, and R. J. Weber, “Fiber-based magneto-optic Sagnac optical modulator,” IEEE Trans. Magn. 45, 4892–4894 (2009).
    [CrossRef]
  12. S. Kemmet, M. Mina, and R. J. Weber, “Sagnac interferometric switch utilizing Faraday rotation,” J. Appl. Phys. 105, 07E702 (2009).
    [CrossRef]
  13. J. W. Lou, Y. Liang, O. Boyraz, and M. N. Islam, “All-optical 100 Gbit/s word packet time-division-multiplexed access node in a looped-back configuration: enabling technologies for sequential add-drop functionality,” Appl. Opt. 39, 5280–5294(2000).
    [CrossRef]
  14. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
    [CrossRef]
  15. A. M. Smith, “Polarization and magneto-optic properties of single-mode optical fiber,” Appl. Opt. 17, 52–56 (1978).
    [CrossRef] [PubMed]
  16. X. Shu, L. Yu, D. Zhao, L. Zhang, K. Sugden, and I. Bennion, “Transmission characteristics of Sagnac interferometers based on fiber Bragg gratings,” J. Opt. Soc. Am. B 19, 2770–2780 (2002).
    [CrossRef]
  17. F. Wen, B.-J. Wu, Z. Li, and T. Luo, “Loss performance of optical devices based on high nonlinear fibers,” Acta Opt Sin / Guangxue Xuebao 30, s100308 (2010).

2010

F. Wen, B.-J. Wu, Z. Li, and T. Luo, “Loss performance of optical devices based on high nonlinear fibers,” Acta Opt Sin / Guangxue Xuebao 30, s100308 (2010).

2009

S. Kemmet, M. Mina, and R. J. Weber, “Fiber-based magneto-optic Sagnac optical modulator,” IEEE Trans. Magn. 45, 4892–4894 (2009).
[CrossRef]

S. Kemmet, M. Mina, and R. J. Weber, “Sagnac interferometric switch utilizing Faraday rotation,” J. Appl. Phys. 105, 07E702 (2009).
[CrossRef]

B.-J. Wu, X. Liu, and K. Qiu, “Characteristics of magneto-optic fiber Bragg gratings for use in optical signal processing,” Opt. Fiber Technol. 15, 165–171 (2009).
[CrossRef]

K. Qiu, B.-J. Wu, and F. Wen, “Nonlinear propagation of circularly polarized light in magneto-optic fiber Bragg gratings,” Acta Phys. Sin. 58, 1726–1730 (2009).

2008

F. Wen, B.-J. Wu, and K. Qiu, “Ground effects on magneto-optic Bragg cells,” Chinese Science Bulletin 53, 2753–2757 (2008).
[CrossRef]

C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14, 616–624 (2008).
[CrossRef]

2006

A. Maeda and M. Susaki, “Magnetostatic wave propagation in yttrium-iron-garnet with microfabricated surfaces,” IEEE Trans. Magn. 42, 3096–3098 (2006).
[CrossRef]

2003

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[CrossRef]

2002

2000

1998

A. Hirano, T. Kataoka, S. Kuwahara, M. Asobe, and Y. Yamabayashi, “All-optical limiter circuit based on four-wave mixing in optical fibres,” Electron. Lett. 34, 1410–1411(1998).
[CrossRef]

1996

1985

C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
[CrossRef]

1978

1973

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

Adkins, L.

C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
[CrossRef]

Andres, M. V.

Asobe, M.

A. Hirano, T. Kataoka, S. Kuwahara, M. Asobe, and Y. Yamabayashi, “All-optical limiter circuit based on four-wave mixing in optical fibres,” Electron. Lett. 34, 1410–1411(1998).
[CrossRef]

Belardi, W.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[CrossRef]

Bennion, I.

Boyraz, O.

Cartledge, J. C.

C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14, 616–624 (2008).
[CrossRef]

Chen, W.

C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
[CrossRef]

Cruz, J. L.

Glass, H.

C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
[CrossRef]

Hernandez, M. A.

Hirano, A.

A. Hirano, T. Kataoka, S. Kuwahara, M. Asobe, and Y. Yamabayashi, “All-optical limiter circuit based on four-wave mixing in optical fibres,” Electron. Lett. 34, 1410–1411(1998).
[CrossRef]

Ibsen, M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[CrossRef]

Islam, M. N.

Ito, C.

C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14, 616–624 (2008).
[CrossRef]

Kataoka, T.

A. Hirano, T. Kataoka, S. Kuwahara, M. Asobe, and Y. Yamabayashi, “All-optical limiter circuit based on four-wave mixing in optical fibres,” Electron. Lett. 34, 1410–1411(1998).
[CrossRef]

Kemmet, S.

S. Kemmet, M. Mina, and R. J. Weber, “Fiber-based magneto-optic Sagnac optical modulator,” IEEE Trans. Magn. 45, 4892–4894 (2009).
[CrossRef]

S. Kemmet, M. Mina, and R. J. Weber, “Sagnac interferometric switch utilizing Faraday rotation,” J. Appl. Phys. 105, 07E702 (2009).
[CrossRef]

Kuwahara, S.

A. Hirano, T. Kataoka, S. Kuwahara, M. Asobe, and Y. Yamabayashi, “All-optical limiter circuit based on four-wave mixing in optical fibres,” Electron. Lett. 34, 1410–1411(1998).
[CrossRef]

Lee, C. C.

C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
[CrossRef]

Lee, J. H.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[CrossRef]

Li, Z.

F. Wen, B.-J. Wu, Z. Li, and T. Luo, “Loss performance of optical devices based on high nonlinear fibers,” Acta Opt Sin / Guangxue Xuebao 30, s100308 (2010).

Liang, Y.

Liu, X.

B.-J. Wu, X. Liu, and K. Qiu, “Characteristics of magneto-optic fiber Bragg gratings for use in optical signal processing,” Opt. Fiber Technol. 15, 165–171 (2009).
[CrossRef]

Lou, J. W.

Luo, T.

F. Wen, B.-J. Wu, Z. Li, and T. Luo, “Loss performance of optical devices based on high nonlinear fibers,” Acta Opt Sin / Guangxue Xuebao 30, s100308 (2010).

Maeda, A.

A. Maeda and M. Susaki, “Magnetostatic wave propagation in yttrium-iron-garnet with microfabricated surfaces,” IEEE Trans. Magn. 42, 3096–3098 (2006).
[CrossRef]

Mina, M.

S. Kemmet, M. Mina, and R. J. Weber, “Fiber-based magneto-optic Sagnac optical modulator,” IEEE Trans. Magn. 45, 4892–4894 (2009).
[CrossRef]

S. Kemmet, M. Mina, and R. J. Weber, “Sagnac interferometric switch utilizing Faraday rotation,” J. Appl. Phys. 105, 07E702 (2009).
[CrossRef]

Monro, T. M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[CrossRef]

Qiu, K.

B.-J. Wu, X. Liu, and K. Qiu, “Characteristics of magneto-optic fiber Bragg gratings for use in optical signal processing,” Opt. Fiber Technol. 15, 165–171 (2009).
[CrossRef]

K. Qiu, B.-J. Wu, and F. Wen, “Nonlinear propagation of circularly polarized light in magneto-optic fiber Bragg gratings,” Acta Phys. Sin. 58, 1726–1730 (2009).

F. Wen, B.-J. Wu, and K. Qiu, “Ground effects on magneto-optic Bragg cells,” Chinese Science Bulletin 53, 2753–2757 (2008).
[CrossRef]

Richardson, D. J.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[CrossRef]

Shu, X.

Smith, A. M.

Sugden, K.

Susaki, M.

A. Maeda and M. Susaki, “Magnetostatic wave propagation in yttrium-iron-garnet with microfabricated surfaces,” IEEE Trans. Magn. 42, 3096–3098 (2006).
[CrossRef]

Tsai, C. S.

C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
[CrossRef]

Weber, R. J.

S. Kemmet, M. Mina, and R. J. Weber, “Fiber-based magneto-optic Sagnac optical modulator,” IEEE Trans. Magn. 45, 4892–4894 (2009).
[CrossRef]

S. Kemmet, M. Mina, and R. J. Weber, “Sagnac interferometric switch utilizing Faraday rotation,” J. Appl. Phys. 105, 07E702 (2009).
[CrossRef]

Wen, F.

F. Wen, B.-J. Wu, Z. Li, and T. Luo, “Loss performance of optical devices based on high nonlinear fibers,” Acta Opt Sin / Guangxue Xuebao 30, s100308 (2010).

K. Qiu, B.-J. Wu, and F. Wen, “Nonlinear propagation of circularly polarized light in magneto-optic fiber Bragg gratings,” Acta Phys. Sin. 58, 1726–1730 (2009).

F. Wen, B.-J. Wu, and K. Qiu, “Ground effects on magneto-optic Bragg cells,” Chinese Science Bulletin 53, 2753–2757 (2008).
[CrossRef]

Wu, B.-J.

F. Wen, B.-J. Wu, Z. Li, and T. Luo, “Loss performance of optical devices based on high nonlinear fibers,” Acta Opt Sin / Guangxue Xuebao 30, s100308 (2010).

B.-J. Wu, X. Liu, and K. Qiu, “Characteristics of magneto-optic fiber Bragg gratings for use in optical signal processing,” Opt. Fiber Technol. 15, 165–171 (2009).
[CrossRef]

K. Qiu, B.-J. Wu, and F. Wen, “Nonlinear propagation of circularly polarized light in magneto-optic fiber Bragg gratings,” Acta Phys. Sin. 58, 1726–1730 (2009).

F. Wen, B.-J. Wu, and K. Qiu, “Ground effects on magneto-optic Bragg cells,” Chinese Science Bulletin 53, 2753–2757 (2008).
[CrossRef]

Yamabayashi, Y.

A. Hirano, T. Kataoka, S. Kuwahara, M. Asobe, and Y. Yamabayashi, “All-optical limiter circuit based on four-wave mixing in optical fibres,” Electron. Lett. 34, 1410–1411(1998).
[CrossRef]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

Young, D.

C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
[CrossRef]

Yu, L.

Yusoff, Z.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[CrossRef]

Zhang, L.

Zhao, D.

Acta Opt Sin / Guangxue Xuebao

F. Wen, B.-J. Wu, Z. Li, and T. Luo, “Loss performance of optical devices based on high nonlinear fibers,” Acta Opt Sin / Guangxue Xuebao 30, s100308 (2010).

Acta Phys. Sin.

K. Qiu, B.-J. Wu, and F. Wen, “Nonlinear propagation of circularly polarized light in magneto-optic fiber Bragg gratings,” Acta Phys. Sin. 58, 1726–1730 (2009).

Appl. Opt.

Appl. Phys. Lett.

C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass, “Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides,” Appl. Phys. Lett. 47, 651–654 (1985).
[CrossRef]

Chinese Science Bulletin

F. Wen, B.-J. Wu, and K. Qiu, “Ground effects on magneto-optic Bragg cells,” Chinese Science Bulletin 53, 2753–2757 (2008).
[CrossRef]

Electron. Lett.

A. Hirano, T. Kataoka, S. Kuwahara, M. Asobe, and Y. Yamabayashi, “All-optical limiter circuit based on four-wave mixing in optical fibres,” Electron. Lett. 34, 1410–1411(1998).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14, 616–624 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[CrossRef]

IEEE Trans. Magn.

S. Kemmet, M. Mina, and R. J. Weber, “Fiber-based magneto-optic Sagnac optical modulator,” IEEE Trans. Magn. 45, 4892–4894 (2009).
[CrossRef]

A. Maeda and M. Susaki, “Magnetostatic wave propagation in yttrium-iron-garnet with microfabricated surfaces,” IEEE Trans. Magn. 42, 3096–3098 (2006).
[CrossRef]

J. Appl. Phys.

S. Kemmet, M. Mina, and R. J. Weber, “Sagnac interferometric switch utilizing Faraday rotation,” J. Appl. Phys. 105, 07E702 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Fiber Technol.

B.-J. Wu, X. Liu, and K. Qiu, “Characteristics of magneto-optic fiber Bragg gratings for use in optical signal processing,” Opt. Fiber Technol. 15, 165–171 (2009).
[CrossRef]

Other

Thorlabs isolators, http://www.thorlabs.hk/NewGroupPage9.cfm?ObjectGroup_ID=3084.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

All-fiber magneto-optic Sagnac interferometer (AFMOSI).

Fig. 2
Fig. 2

Experimental block diagram of the AFMOSI.

Fig. 3
Fig. 3

Dependence of transmittivity on the coupling-ratio ρ.

Fig. 4
Fig. 4

Magnetic field responses of transmitted powers at different bias points of power.

Fig. 5
Fig. 5

Dependence of the bias point of power on the linear birefringence.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E = 1 2 s , p p ^ E i , p s = 1 2 s , p p ^ F ( x , y ) B p s ( z , t ) exp [ j ( ω 0 t s β 0 z ) ] + c.c. ,
[ B x s ( z , t ) B y s ( z , t ) ] = [ exp ( j s Δ β 2 z ) 0 0 exp ( j s Δ β 2 z ) ] × [ A x s ( z , t ) A y s ( z , t ) ] ,
T MO - fiber = [ 0 0 A 11 A 12 0 0 A 21 A 22 A 11 A 12 0 0 A 21 A 22 0 0 ] ,
[ E 5 , x 1 E 5 , y 1 E 6 , x + 1 E 6 , y + 1 ] = T MO - fiber · [ E 5 , x + 1 E 5 , y + 1 E 6 , x 1 E 6 , y 1 ] ;
T coupler = [ 1 ρ 0 j ρ 0 0 1 ρ 0 j ρ j ρ 0 1 ρ 0 0 j ρ 0 1 ρ ] ,
T fiber = exp ( α tot / 4 ) [ exp ( j β 0 l 1 ) 0 0 0 0 exp ( j β 0 l 1 ) 0 0 0 0 exp ( j β 0 l 2 ) 0 0 0 0 exp ( j β 0 l 2 ) ] ,
[ E 1 , x out E 1 , y out E 2 , x out E 2 , y out ] = T coupler · T fiber · T MO - fiber · T fiber · T coupler · [ E 1 , x in E 1 , y in E 2 , x in E 2 , y in ] = T AFMOSI · [ E 1 , x in E 1 , y in E 2 , x in E 2 , y in ]
T AFMOSI = exp [ j β 0 ( l 1 + l 2 ) α tot / 2 ] [ j ρ 1 ρ ( A 11 + A 11 ) j ρ 1 ρ ( A 12 + A 12 ) ( 1 ρ ) A 11 ρ A 11 ( 1 ρ ) A 12 ρ A 12 j ρ 1 ρ ( A 21 + A 21 ) j ρ 1 ρ ( A 22 + A 22 ) ( 1 ρ ) A 21 ρ A 21 ( 1 ρ ) A 22 ρ A 22 ρ A 11 + ( 1 ρ ) A 11 ρ A 12 + ( 1 ρ ) A 12 j ρ 1 ρ ( A 11 + A 11 ) j ρ 1 ρ ( A 12 + A 12 ) ρ A 21 + ( 1 ρ ) A 21 ρ A 22 + ( 1 ρ ) A 22 j ρ 1 ρ ( A 21 + A 21 ) j ρ 1 ρ ( A 22 + A 22 ) ] .
{ T = | E 2 , x out | 2 + | E 2 , y out | 2 | E 1 , x in | 2 + | E 1 , y in | 2 = F α [ 1 ξ R cos 2 ( κ L ) ] R = | E 1 , x out | 2 + | E 1 , y out | 2 | E 1 , x in | 2 + | E 1 , y in | 2 = F α ξ R cos 2 ( κ L ) ,
ρ = 1 2 + T / F α 2 = 0.508.
cos 2 ( V B B L ) = [ 1 T / F α ] / ξ R .
T F α [ ξ R L 2 κ m 2 + ξ R L 2 Δ β 2 / 4 + ( 1 ξ R ) ] .

Metrics