Abstract

A novel core-offset hollow core photonic bandgap fiber (HCPBF) based intermodal interferometer is presented. It is fabricated by splicing a section of HCPBF between two single mode fibers with a slight core offset at one splice joint. The fabrication process only involves splicing and cleaving. Its applications for strain and temperature measurements are also demonstrated. Its strain and temperature sensitivities are 1.17pm/με and 6.66pm/°C, respectively.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46, 2516–2519(2007).
    [CrossRef] [PubMed]
  2. B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Temperature-and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16, 19291–19296 (2008).
    [CrossRef]
  3. B. Dong, L. Wei, D.-P. Zhou, W.-K. Liu, and J. W. Y. Lit, “Core-offset small-core-diameter dispersion compensation fiber interferometer and its applications in fiber sensors,” Appl. Opt. 48, 4577–4581 (2009).
    [CrossRef] [PubMed]
  4. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375(2008).
    [CrossRef] [PubMed]
  5. B. Dong, D-P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010).
    [CrossRef]
  6. Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
    [CrossRef]
  7. Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
    [CrossRef]
  8. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
    [CrossRef] [PubMed]
  9. Y-J. Rao, M. Deng, D-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. 148, 33–38 (2008).
    [CrossRef]
  10. D. Bo, Z. Qida, L. Feng, G. Tuan, X. Lifang, L. Shuhong, and G. Hong, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (5)

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375(2008).
[CrossRef] [PubMed]

B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Temperature-and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16, 19291–19296 (2008).
[CrossRef]

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Y-J. Rao, M. Deng, D-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. 148, 33–38 (2008).
[CrossRef]

2007 (2)

2006 (1)

Bo, D.

Chung, Y.

Deng, M.

Y-J. Rao, M. Deng, D-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. 148, 33–38 (2008).
[CrossRef]

Dong, B.

Dong, X.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Duan, D. W.

Duan, D-W.

Y-J. Rao, M. Deng, D-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. 148, 33–38 (2008).
[CrossRef]

Feng, L.

Hong, G.

Hu, J. J.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Hwang, D.

Jin, L.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Kai, G.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Li, Y.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Lifang, X.

Lit, J. W. Y.

Liu, W.-K.

Liu, Y.

Liu, Z.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Lv, F.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Moon, D. S.

Moon, S.

Nguyen, L. V.

Qida, Z.

Rao, Y. J.

Rao, Y-J.

Y-J. Rao, M. Deng, D-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. 148, 33–38 (2008).
[CrossRef]

Shi, Q.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Shuhong, L.

Tuan, G.

Wang, Z.

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Wei, L.

Yang, X. C.

Zhang, H.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

Zhou, D.-P.

Zhou, D-P.

Zhu, T.

Y-J. Rao, M. Deng, D-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. 148, 33–38 (2008).
[CrossRef]

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (2)

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry—Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lv, G. Kai, and X. Dong, “A Hollow-Core Photonic Crystal Fiber Cavity Based Multiplexed Fabry—PÉrot Interferometric Strain Sensor System,” IEEE Photon. Technol. Lett. 20, 1329–1331 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (1)

Sens. Actuators A, Phys. (1)

Y-J. Rao, M. Deng, D-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. 148, 33–38 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic configuration of the experimental setup (Insets are the photographs of splice 1 and 2).

Fig. 2
Fig. 2

Transmission spectra of the IMI without and with the core offset.

Fig. 3
Fig. 3

Spatial frequency spectrum of the IMI with the core offset.

Fig. 4
Fig. 4

Transmission spectral response to strain.

Fig. 5
Fig. 5

Measured relationship between the strain and wavelength shift.

Fig. 6
Fig. 6

Transmission spectral response to temperature.

Fig. 7
Fig. 7

Measured relationship between the temperature and wavelength shift.

Metrics