Abstract

In stereoscopy, stereoscopic depth distortion is a serious problem in terms of determining the correct depth sense. There have been few studies pertaining to the problem in terms of the focused object distance (FOD). In this investigation, we discuss the FOD as one of the factors inducing an incorrect depth sense in using common stereo camera systems and propose a method for compensating the incorrect depth sense, which is strongly related to the process of demagnifying the size of displayed stereo image on the screen. The incorrect depth sense increases when the FOD becomes shortened. Our method illustrates that the depth sense difference between a correct depth sense and an induced depth error is compensated completely. We verified the validation of our concerns by both a theoretical simulation and a practical experiment.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Diner and D. H. Fender, “Methods of viewing 3-D images,” in Human Engineering in Stereoscopic Viewing Devices (Plenum, 1994), pp. 35–66.
  2. D. B. Diner and M. von Sydow, Dynamic Stereo Vision Depth Distortions in Teleoperation, International Symposium on Teleoperation and Control (Springer-Verlag, 1988).
    [PubMed]
  3. H. F. Kurtz, “Orthostereoscopy,” J. Opt. Soc. Am. 27, 323–339 (1937).
    [CrossRef]
  4. J.-Y. Son, K.-H. Cha, S.-K. Kim, M.-C. Park, and S.-H. Jang, “Stereo photography with hand phone,” Proc. SPIE 6392, 639205 (2006).
    [CrossRef]
  5. K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
    [CrossRef]
  6. D. M. Zamarian, “Use of stereopsis in electronic displays: Part II—Stereoscopic threshold performance as a function of system characteristics,” Report MDC J7410 (Douglas Aircraft Company, 1976).
  7. H. W. Upton and D. D. Strother, “Design and flight evaluation of helmet-mounted display and control system,” in A Symposium on Visually Coupled Systems: Development and Application, J.A.Brit and H.L.Task, eds. (Brooks Air Force Base, 1973), pp. AMD-TR-73-1.
  8. K.-H. Lee, D.-W. Kim, Y. Kwon, N. Hur, and S. Kim, “Correct depth analysis on the stereoscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB21.
  9. A. Woods, T. Docherty, and R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
    [CrossRef]
  10. T. Honda, K. Okada, and J. Tsujiuchi, “3-D distortion of observed images reconstructed from a cylindrical holographic stereogram. I. Laser light reconstruction type,” Opt. Commun. 36, 11–16 (1981).
    [CrossRef]
  11. S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120–123 (2003).
    [CrossRef]
  12. R. Kingslake, “Paraxial rays and first-order optics,” in Lens Design Fundamental (Academic, 1978), pp. 40–71.
  13. J. M. Geary, “Paraxial world,” in Introduction to Lens Design (Willmann-Bell, 2002), pp. 33–42.

2007 (1)

K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
[CrossRef]

2006 (1)

J.-Y. Son, K.-H. Cha, S.-K. Kim, M.-C. Park, and S.-H. Jang, “Stereo photography with hand phone,” Proc. SPIE 6392, 639205 (2006).
[CrossRef]

2003 (1)

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120–123 (2003).
[CrossRef]

1993 (1)

A. Woods, T. Docherty, and R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

1981 (1)

T. Honda, K. Okada, and J. Tsujiuchi, “3-D distortion of observed images reconstructed from a cylindrical holographic stereogram. I. Laser light reconstruction type,” Opt. Commun. 36, 11–16 (1981).
[CrossRef]

1937 (1)

Cha, K.-H.

J.-Y. Son, K.-H. Cha, S.-K. Kim, M.-C. Park, and S.-H. Jang, “Stereo photography with hand phone,” Proc. SPIE 6392, 639205 (2006).
[CrossRef]

Diner, D. B.

D. B. Diner and D. H. Fender, “Methods of viewing 3-D images,” in Human Engineering in Stereoscopic Viewing Devices (Plenum, 1994), pp. 35–66.

D. B. Diner and M. von Sydow, Dynamic Stereo Vision Depth Distortions in Teleoperation, International Symposium on Teleoperation and Control (Springer-Verlag, 1988).
[PubMed]

Docherty, T.

A. Woods, T. Docherty, and R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Fender, D. H.

D. B. Diner and D. H. Fender, “Methods of viewing 3-D images,” in Human Engineering in Stereoscopic Viewing Devices (Plenum, 1994), pp. 35–66.

Geary, J. M.

J. M. Geary, “Paraxial world,” in Introduction to Lens Design (Willmann-Bell, 2002), pp. 33–42.

Honda, T.

T. Honda, K. Okada, and J. Tsujiuchi, “3-D distortion of observed images reconstructed from a cylindrical holographic stereogram. I. Laser light reconstruction type,” Opt. Commun. 36, 11–16 (1981).
[CrossRef]

Hur, N.

K.-H. Lee, D.-W. Kim, Y. Kwon, N. Hur, and S. Kim, “Correct depth analysis on the stereoscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB21.

Jang, S.-H.

J.-Y. Son, K.-H. Cha, S.-K. Kim, M.-C. Park, and S.-H. Jang, “Stereo photography with hand phone,” Proc. SPIE 6392, 639205 (2006).
[CrossRef]

Kim, D.-W.

K.-H. Lee, D.-W. Kim, Y. Kwon, N. Hur, and S. Kim, “Correct depth analysis on the stereoscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB21.

Kim, S.

K.-H. Lee, D.-W. Kim, Y. Kwon, N. Hur, and S. Kim, “Correct depth analysis on the stereoscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB21.

Kim, S.-H.

K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
[CrossRef]

Kim, S.-K.

K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
[CrossRef]

J.-Y. Son, K.-H. Cha, S.-K. Kim, M.-C. Park, and S.-H. Jang, “Stereo photography with hand phone,” Proc. SPIE 6392, 639205 (2006).
[CrossRef]

Kingslake, R.

R. Kingslake, “Paraxial rays and first-order optics,” in Lens Design Fundamental (Academic, 1978), pp. 40–71.

Koch, R.

A. Woods, T. Docherty, and R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Kurtz, H. F.

Kwon, Y.

K.-H. Lee, D.-W. Kim, Y. Kwon, N. Hur, and S. Kim, “Correct depth analysis on the stereoscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB21.

Lee, K.-H.

K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
[CrossRef]

K.-H. Lee, D.-W. Kim, Y. Kwon, N. Hur, and S. Kim, “Correct depth analysis on the stereoscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB21.

Lee, S.

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120–123 (2003).
[CrossRef]

Okada, K.

T. Honda, K. Okada, and J. Tsujiuchi, “3-D distortion of observed images reconstructed from a cylindrical holographic stereogram. I. Laser light reconstruction type,” Opt. Commun. 36, 11–16 (1981).
[CrossRef]

Park, M.-C.

K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
[CrossRef]

J.-Y. Son, K.-H. Cha, S.-K. Kim, M.-C. Park, and S.-H. Jang, “Stereo photography with hand phone,” Proc. SPIE 6392, 639205 (2006).
[CrossRef]

Shioiri, S.

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120–123 (2003).
[CrossRef]

Son, J.-Y.

K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
[CrossRef]

J.-Y. Son, K.-H. Cha, S.-K. Kim, M.-C. Park, and S.-H. Jang, “Stereo photography with hand phone,” Proc. SPIE 6392, 639205 (2006).
[CrossRef]

Strother, D. D.

H. W. Upton and D. D. Strother, “Design and flight evaluation of helmet-mounted display and control system,” in A Symposium on Visually Coupled Systems: Development and Application, J.A.Brit and H.L.Task, eds. (Brooks Air Force Base, 1973), pp. AMD-TR-73-1.

Tsujiuchi, J.

T. Honda, K. Okada, and J. Tsujiuchi, “3-D distortion of observed images reconstructed from a cylindrical holographic stereogram. I. Laser light reconstruction type,” Opt. Commun. 36, 11–16 (1981).
[CrossRef]

Upton, H. W.

H. W. Upton and D. D. Strother, “Design and flight evaluation of helmet-mounted display and control system,” in A Symposium on Visually Coupled Systems: Development and Application, J.A.Brit and H.L.Task, eds. (Brooks Air Force Base, 1973), pp. AMD-TR-73-1.

von Sydow, M.

D. B. Diner and M. von Sydow, Dynamic Stereo Vision Depth Distortions in Teleoperation, International Symposium on Teleoperation and Control (Springer-Verlag, 1988).
[PubMed]

Woods, A.

A. Woods, T. Docherty, and R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Yaguchi, H.

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120–123 (2003).
[CrossRef]

Youn, Y.-S.

K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
[CrossRef]

Zamarian, D. M.

D. M. Zamarian, “Use of stereopsis in electronic displays: Part II—Stereoscopic threshold performance as a function of system characteristics,” Report MDC J7410 (Douglas Aircraft Company, 1976).

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

T. Honda, K. Okada, and J. Tsujiuchi, “3-D distortion of observed images reconstructed from a cylindrical holographic stereogram. I. Laser light reconstruction type,” Opt. Commun. 36, 11–16 (1981).
[CrossRef]

Opt. Rev. (1)

S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120–123 (2003).
[CrossRef]

Proc. SPIE (3)

J.-Y. Son, K.-H. Cha, S.-K. Kim, M.-C. Park, and S.-H. Jang, “Stereo photography with hand phone,” Proc. SPIE 6392, 639205 (2006).
[CrossRef]

K.-H. Lee, S.-H. Kim, Y.-S. Youn, J.-Y. Son, M.-C. Park, and S.-K. Kim, “Constraints for stereoscopic vision in stereo camera phone,” Proc. SPIE 6778, 67780H (2007).
[CrossRef]

A. Woods, T. Docherty, and R. Koch, “Image distortions in stereoscopic video systems,” Proc. SPIE 1915, 36–48 (1993).
[CrossRef]

Other (7)

D. B. Diner and D. H. Fender, “Methods of viewing 3-D images,” in Human Engineering in Stereoscopic Viewing Devices (Plenum, 1994), pp. 35–66.

D. B. Diner and M. von Sydow, Dynamic Stereo Vision Depth Distortions in Teleoperation, International Symposium on Teleoperation and Control (Springer-Verlag, 1988).
[PubMed]

D. M. Zamarian, “Use of stereopsis in electronic displays: Part II—Stereoscopic threshold performance as a function of system characteristics,” Report MDC J7410 (Douglas Aircraft Company, 1976).

H. W. Upton and D. D. Strother, “Design and flight evaluation of helmet-mounted display and control system,” in A Symposium on Visually Coupled Systems: Development and Application, J.A.Brit and H.L.Task, eds. (Brooks Air Force Base, 1973), pp. AMD-TR-73-1.

K.-H. Lee, D.-W. Kim, Y. Kwon, N. Hur, and S. Kim, “Correct depth analysis on the stereoscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB21.

R. Kingslake, “Paraxial rays and first-order optics,” in Lens Design Fundamental (Academic, 1978), pp. 40–71.

J. M. Geary, “Paraxial world,” in Introduction to Lens Design (Willmann-Bell, 2002), pp. 33–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Geometrical view of the process of determining the object image coordinates on the detectors when the FOD is infinity.

Fig. 2
Fig. 2

Systematic scheme of the process of determining object image coordinates on the detectors when the FOD is infinity.

Fig. 3
Fig. 3

Systematic scheme of the process of determining object image coordinates on the detectors when the FOD is not infinity.

Fig. 4
Fig. 4

Geometrical view of the process of determining the object image coordinates on the detectors when the FOD is not infinity.

Fig. 5
Fig. 5

Geometrical scheme showing two cases of reconstructed depth sense for the same object. The coordinates ( X I , Z I ) on the screen present the perceived depth sense for the object when the FOD is infinity. The other, which is denoted as ( X I , Z I ) in front of the screen, represents the different perceived depth senses for the same object when the FOD is not infinity.

Fig. 6
Fig. 6

Simulation results of the SDD when the practical data are substituted into Eqs. (9, 10). Four FODs were considered as main factors inducing depth sense differences: 900, 4800, and 9900 mm and infinity. All of the rectangular areas corresponded to the unit area of 1000 mm × 1000 mm in the object space.

Fig. 7
Fig. 7

Geometrical view of the compensated SDD.

Fig. 8
Fig. 8

Compensated depth distortion, drawn using the same methods as in Fig. 6.

Fig. 9
Fig. 9

(a) Parallel type of stereo camera alignment used in the experiment, (b) three objects at the aforementioned distances in free space, (c) one of the stereograms with an interval at the center of the stereo image, and (d) two superposed images obtained by the left-side camera, one of which was taken when the FOD was 900 mm and the other when the FOD was infinity.

Fig. 10
Fig. 10

(a) Data of SDDs in the fourth column of Table 1. (b)–(d) Detailed results of progressive changes in SDD with each step of the FOD.

Fig. 11
Fig. 11

(a) Data from the fourth column of Table 2. (b)–(d) Detailed results indicating progressive changes in the compensated depth distortions according to each of the M C values considered.

Tables (2)

Tables Icon

Table 1 Disparities and Reconstructed Depth Senses from Both the Theoretical and Experimental Results

Tables Icon

Table 2 Compensated Disparity and Reconstructed Depth Sense of the Theoretical and Experimental Results

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

w L = f z ( x + t 2 ) , w R = f z ( x t 2 ) ,
dis ( w L w R ) = f t z .
f = f ( 1 + α f ) = f ( s o s o f ) .
w L = f s o z ( s o f ) ( x + t 2 ) , w R = f s o z ( s o f ) ( x t 2 ) ,
dis ( w L w R ) = f t z ( 1 f s o ) .
W = M w = ( V f ) w .
W L = M ( w L ) t 2 , W R = M ( w R ) + t 2 ,
DIS ( W L W R ) = V t z ( 1 f s o ) t .
Z I = V e ( DIS + e ) ,
X I = e ( W L + W R ) 2 ( e + DIS ) .
M C = V ( 1 f 1 s o ) .
W L C = M C ( w L ) t 2 , W R C = M C ( w R ) + t 2 ,
DIS C ( W L C W R C ) = V t z t .
Z C I = V e ( DIS C + e ) ,
X C I = e ( W L C + W R C ) 2 ( e + DIS C ) ,

Metrics