Abstract

A study on the feasibility of using pseudorandom modulation continuous-wave (PMCW) Na lidar for mesopause-region temperature and horizontal wind measurements is presented with a number of specific geometries and associated beam-telescope overlap functions, suitable for ground-based and airborne deployments. The performance of these deployment scenarios is analyzed by scaling from the received signal and sky background and the measurement uncertainties in temperature and horizontal wind of the well-tested Colorado State University pulsed Na lidar. Using currently available high-power (20W) continuous-wave Na narrowband lasers, a compact PMCW bistatic Na lidar system can indeed be deployed to simultaneously measure mesopause-region temperature and horizontal winds on a 24h continuous basis, weather permitting.

© 2011 Optical Society of America

Full Article  |  PDF Article

Corrections

Chiao-Yao She, Makoto Abo, Jia Yue, Bifford P. Williams, Chikao Nagasawa, and Takuji Nakamura, "Mesopause region temperature and wind measurements with pseudorandom modulation continuous-wave (PMCW) lidar at 589 nm: Erratum," Appl. Opt. 51, 1981-1981 (2012)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-51-12-1981

References

  • View by:
  • |
  • |
  • |

  1. M. Willet, “Characteristic m-sequences,” Math. Comput. 30, 306–311 (1976).
  2. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22, 1382–1386 (1983).
    [CrossRef] [PubMed]
  3. C. Nagasawa, M. Abo, H. Yamamoto, and O. Uchino, “Random modulation lidar using new random sequence,” Appl. Opt. 29, 1466–1470 (1990).
    [CrossRef] [PubMed]
  4. J. L. Machol, “Comparison of the pseudorandom noise code and pulsed direct-detection lidars for atmospheric probing,” Appl. Opt. 36, 6021–6023 (1997).
    [CrossRef] [PubMed]
  5. M. Abo and C. Nagasawa, “Random modulation CW dye lidar for measuring mesospheric sodium layer,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1984, paper 26PA14, p. 258.
  6. J. M. Beckers, “Adaptive optics for astronomy principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–21 (1993).
    [CrossRef]
  7. L. Y. Taylor, Y. Feng, and D. B. Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express 17, 14687–14693 (2009).
    [CrossRef] [PubMed]
  8. L. Y. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18, 8540–8555 (2010).
    [CrossRef] [PubMed]
  9. C.-Y. She, “Initial full-diurnal-cycle mesopause region lidar observations: diurnal-means and tidal perturbations of temperature and winds over Fort Collins, CO (41N, 105W), PSMOS 2002,” J. Atmos. Sol. Terr. Phys. 66, 663–674 (2004).
    [CrossRef]
  10. C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
    [CrossRef]
  11. P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
    [CrossRef]
  12. J. Höffner and J. Lautenbach, “Daylight measurements of mesopause temperature and vertical wind with the mobile scanning iron lidar,” Opt. Lett. 34, 1351–1353 (2009).
    [CrossRef] [PubMed]
  13. J. H. Hair, “A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters,” Ph.D. dissertation (Colorado State University, 1998).
  14. T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and laser adaptive optics studies,” Geophys. Res. Lett. 36, L15831, doi: 10.1029/2009GL038802 (2009).
    [CrossRef]
  15. C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
    [CrossRef]

2010 (1)

2009 (3)

2004 (1)

C.-Y. She, “Initial full-diurnal-cycle mesopause region lidar observations: diurnal-means and tidal perturbations of temperature and winds over Fort Collins, CO (41N, 105W), PSMOS 2002,” J. Atmos. Sol. Terr. Phys. 66, 663–674 (2004).
[CrossRef]

2002 (1)

2000 (1)

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

1997 (1)

1993 (1)

J. M. Beckers, “Adaptive optics for astronomy principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–21 (1993).
[CrossRef]

1991 (1)

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[CrossRef]

1990 (1)

1983 (1)

1976 (1)

M. Willet, “Characteristic m-sequences,” Math. Comput. 30, 306–311 (1976).

Abo, M.

C. Nagasawa, M. Abo, H. Yamamoto, and O. Uchino, “Random modulation lidar using new random sequence,” Appl. Opt. 29, 1466–1470 (1990).
[CrossRef] [PubMed]

M. Abo and C. Nagasawa, “Random modulation CW dye lidar for measuring mesospheric sodium layer,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1984, paper 26PA14, p. 258.

Alpers, M.

Baba, H.

Beckers, J. M.

J. M. Beckers, “Adaptive optics for astronomy principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–21 (1993).
[CrossRef]

Calia, D. B.

Chen, S. S.

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Feng, Y.

Fricke-Begemann, C.

Hair, J. H.

J. H. Hair, “A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters,” Ph.D. dissertation (Colorado State University, 1998).

Hickson, P.

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and laser adaptive optics studies,” Geophys. Res. Lett. 36, L15831, doi: 10.1029/2009GL038802 (2009).
[CrossRef]

Höffner, J.

Hu, Z. L.

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Krueger, D. A.

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Lautenbach, J.

Machol, J. L.

Nagasawa, C.

C. Nagasawa, M. Abo, H. Yamamoto, and O. Uchino, “Random modulation lidar using new random sequence,” Appl. Opt. 29, 1466–1470 (1990).
[CrossRef] [PubMed]

M. Abo and C. Nagasawa, “Random modulation CW dye lidar for measuring mesospheric sodium layer,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1984, paper 26PA14, p. 258.

Pfrommer, T.

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and laser adaptive optics studies,” Geophys. Res. Lett. 36, L15831, doi: 10.1029/2009GL038802 (2009).
[CrossRef]

Sakurai, K.

She, C.-Y.

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and laser adaptive optics studies,” Geophys. Res. Lett. 36, L15831, doi: 10.1029/2009GL038802 (2009).
[CrossRef]

C.-Y. She, “Initial full-diurnal-cycle mesopause region lidar observations: diurnal-means and tidal perturbations of temperature and winds over Fort Collins, CO (41N, 105W), PSMOS 2002,” J. Atmos. Sol. Terr. Phys. 66, 663–674 (2004).
[CrossRef]

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Sherman, J.

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Sugimoto, N.

Takeuchi, N.

Taylor, L. Y.

Uchino, O.

Vance, J. D.

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Vasoli, V.

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

von der Gathen, P.

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[CrossRef]

White, M. A.

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Willet, M.

M. Willet, “Characteristic m-sequences,” Math. Comput. 30, 306–311 (1976).

Yamamoto, H.

Yu, J. R.

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

Annu. Rev. Astron. Astrophys. (1)

J. M. Beckers, “Adaptive optics for astronomy principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–21 (1993).
[CrossRef]

Appl. Opt. (3)

Geophys. Res. Lett. (2)

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and laser adaptive optics studies,” Geophys. Res. Lett. 36, L15831, doi: 10.1029/2009GL038802 (2009).
[CrossRef]

C.-Y. She, S. S. Chen, Z. L. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. R. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[CrossRef]

J. Atmos. Sol. Terr. Phys. (1)

C.-Y. She, “Initial full-diurnal-cycle mesopause region lidar observations: diurnal-means and tidal perturbations of temperature and winds over Fort Collins, CO (41N, 105W), PSMOS 2002,” J. Atmos. Sol. Terr. Phys. 66, 663–674 (2004).
[CrossRef]

J. Geophys. Res. (1)

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[CrossRef]

Math. Comput. (1)

M. Willet, “Characteristic m-sequences,” Math. Comput. 30, 306–311 (1976).

Opt. Express (2)

Opt. Lett. (2)

Other (2)

M. Abo and C. Nagasawa, “Random modulation CW dye lidar for measuring mesospheric sodium layer,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 25–29 July 1984, paper 26PA14, p. 258.

J. H. Hair, “A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters,” Ph.D. dissertation (Colorado State University, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Signal plus background photon profiles of (a) the CSU pulsed lidar with a 50 Hz pulsed transmitter and temporal and vertical resolutions of 40 s and 130 m under night (open circles) and local noon (solid squares) conditions and of (b) the same except at a vertical resolution of 4.0 km , with the geometrical factor of 30.8 time increase in both signal and background. In the legend, the number following B is the sky background (from above 130 km ) count per resolution bin for the respective cases.

Fig. 2
Fig. 2

(a) Temperature and (b) zonal wind measurement uncertainties of the CSU pulsed lidar with 1 h integration and vertical resolution of 4.0 km . Solid and dashed curves depict nighttime and local noon observational conditions, respectively.

Fig. 3
Fig. 3

Comparison of the signal and background levels between the pulsed lidar and the proposed PMCW lidar for (a) night conditions (open circles for pulsed and solid circles for PMCW) and (b) noon conditions (open squares for pulsed, left scale and solid squares for PMCW, right scale) with the same PA = 0.05 Wm 2 . The photon numbers refer to 40 s and 4.0 km resolution with the same value of β = 0.4 mrad .

Fig. 4
Fig. 4

Comparison of S/N of the CSU pulsed lidar and the proposed PMCW lidar scenarios based on photon profiles in winter with 40 s integration and 130 m vertical resolution, under (a) nighttime and (b) local noon conditions.

Fig. 5
Fig. 5

Geometry of the transmitting beam (from x = 0 ) and receiver (at x = x 0 ). x 0 = the distance between the transmitter and receiver. δ and β = half divergence angles of the transmitting beam and FOV of the receiver. The center of the transmitting beam intersects the left, center, and right of the receiver’s FOV, respectively, at vertical heights of z 1 , z 0 , and z 2 . The left (right) rim of receiver FOV intersects the lower and upper edge of transmitting beam at the vertical heights z 1 and z 1 h ( z 2 and z 2 h ). Full reception (unity overlap function) is achieved between z 1 h and z 2 . α is an angle depending on the values of x 0 and z 0 as tan α = z 0 / x 0 .

Fig. 6
Fig. 6

Intersection between the transmitting beam and receiver’s FOV as indicated by circles with radii r a and r b , respectively. For the ease of discussion in the text, the distances AC, BC, and AB are denoted, as x a , x b , and D, respectively. (b) Same as (a), except at a higher vertical height when D < r b and the center beam is in the receiver’s FOV; the circles should be larger than those in (a). (c) Overlap function based on the system parameters shown in Table 6 with calculation outlined here.

Tables (6)

Tables Icon

Table 1 Time Series of the Transmitting and Receiving M-Code and Their Correlation for N = 31

Tables Icon

Table 2 S/N and Percentage Fluctuation at the Na Peak from Various Contributions

Tables Icon

Table 3 Comparison of Signal at Na Peak and Background Photon Counts from Each Contribution between Two Deployments with 20 Times Different Powers ( PA = 0.05 Wm 2 and PA = 0.05 Wm 2 )

Tables Icon

Table 4 Measurement Uncertainties of Pulsed and PMCW Lidar PA / Beam = 0.05 with 1 h and 4 km Resolution, at the Peak of the Na Layer (with Values for 1.0 Wm 2 in Parentheses)

Tables Icon

Table 5 Comparison of S/N at Na Peak between Winter and Summer for PMCW GB_L Deployment with PA = 1.0 Wm 2 (or P = 10 W / Beam , Telescope Diam. = 35 cm )

Tables Icon

Table 6 Parameters of Proposed PMCW Configurations with z Being Vertical Range (Not Altitude) a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ a a ( k ) = i = 0 N 1 a i a i + k = { ( N + 1 ) / 2 k = 0 0 k 0 .
S ( k ) = P 0 h ν N j = 0 N 1 ϕ a a ( j k ) G j + j = 0 N 1 a j k b j ; k = 0 , 1 , 2 , 3 , , N 1 ,
z 1 h = x 0 [ 1 tan ( α + δ ) + tan β ] 1 , z 2 = x 0 [ 1 tan ( α δ ) tan β ] 1 .
A a , b = r a , b 2 [ θ a , b 0.5 sin 2 θ a , b ] , where     θ a , b = sin 1 ( r a , b 2 x a , b 2 r a , b ) .

Metrics