Abstract

Based on the polarization-sensitive terahertz time-domain spectroscopy, we measured the birefringence for Al2O3 and LiNbO3 single crystals, which correspond to trigonal structures that have an uniaxial birefringence, in the THz frequency range of 0.25 to 1.4THz. For more comprehensive understanding of the THz birefringence, the measured birefringence is compared with the results of ab initio calculations. The measured birefringence shows good agreement with the calculated value.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  2. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  3. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63(2001).
    [CrossRef] [PubMed]
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
    [CrossRef]
  5. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
    [CrossRef]
  6. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
    [CrossRef] [PubMed]
  7. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
    [CrossRef]
  8. T. Kleine-Ostmann and T. Nagatsuma, “A review of terahertz communications research,” J. Infrared Milli. Terahz. Waves 32, 143–171 (2011).
    [CrossRef]
  9. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
    [CrossRef]
  10. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
    [CrossRef]
  11. http://www.makeitfrom.com/data/?material=Alumina.
  12. S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals,” Jpn. J. Appl. Phys. 41, 7033–7037 (2002).
    [CrossRef]
  13. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
    [CrossRef]
  14. C. Jordens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
    [CrossRef] [PubMed]
  15. Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids II(Academic, 1985), p. 765.
  17. E. D. Palik, Handbook of Optical Constants of Solids I(Academic, 1985), p. 700.
  18. R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).
  19. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
    [CrossRef]
  20. S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
    [CrossRef]
  21. C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110, 6158–6170 (1999).
    [CrossRef]
  22. http://www.crystal.unito.it/Basis_Sets/Ptable.html.
  23. ICSD (International Crystal Structure database) website, ID 5674 for Al2O3 and ID 11588 for LiNbO3.
  24. M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, “Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects,” J. Chem. Phys. 128, 014110 (2008).
    [CrossRef] [PubMed]
  25. C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
    [CrossRef] [PubMed]

2011 (2)

T. Kleine-Ostmann and T. Nagatsuma, “A review of terahertz communications research,” J. Infrared Milli. Terahz. Waves 32, 143–171 (2011).
[CrossRef]

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

2009 (1)

2008 (2)

M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, “Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects,” J. Chem. Phys. 128, 014110 (2008).
[CrossRef] [PubMed]

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

2006 (1)

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

2005 (1)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

2004 (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
[CrossRef]

2003 (2)

2002 (2)

S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals,” Jpn. J. Appl. Phys. 41, 7033–7037 (2002).
[CrossRef]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

2001 (2)

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63(2001).
[CrossRef] [PubMed]

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
[CrossRef]

2000 (1)

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

1999 (1)

C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110, 6158–6170 (1999).
[CrossRef]

1989 (1)

Adamo, C.

C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110, 6158–6170 (1999).
[CrossRef]

Ahn, J.

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Bakker, H. J.

Barone, V.

C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110, 6158–6170 (1999).
[CrossRef]

Bolivar, P. H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Bosserhoff, A.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Bush, I. J.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Büttner, R.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Civalleri, B.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63(2001).
[CrossRef] [PubMed]

D’Arco, Ph.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Doll, K.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Dovesi, R.

M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, “Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects,” J. Chem. Phys. 128, 014110 (2008).
[CrossRef] [PubMed]

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
[CrossRef] [PubMed]

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Ewert, U.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Fattinger, Ch.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Ferrero, M.

M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, “Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects,” J. Chem. Phys. 128, 014110 (2008).
[CrossRef] [PubMed]

Grischkowsky, D.

Harrison, N. M.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Hasek, T.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Inoue, H.

Jordens, C.

Kawase, K.

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Kim, B. G.

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Kim, Y.

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

King, B. T.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63(2001).
[CrossRef] [PubMed]

Kitahara, H.

S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals,” Jpn. J. Appl. Phys. 41, 7033–7037 (2002).
[CrossRef]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review of terahertz communications research,” J. Infrared Milli. Terahz. Waves 32, 143–171 (2011).
[CrossRef]

Koch, M.

C. Jordens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
[CrossRef] [PubMed]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Kojima, S.

S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals,” Jpn. J. Appl. Phys. 41, 7033–7037 (2002).
[CrossRef]

Kurz, H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Llunell, M.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Mickan, S. P.

S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
[CrossRef]

Mikulics, M.

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review of terahertz communications research,” J. Infrared Milli. Terahz. Waves 32, 143–171 (2011).
[CrossRef]

Nagel, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Nienhuys, H.-K.

Nishizawa, S.

S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals,” Jpn. J. Appl. Phys. 41, 7033–7037 (2002).
[CrossRef]

Ogawa, Y.

Orlando, R.

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
[CrossRef] [PubMed]

M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, “Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects,” J. Chem. Phys. 128, 014110 (2008).
[CrossRef] [PubMed]

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids II(Academic, 1985), p. 765.

E. D. Palik, Handbook of Optical Constants of Solids I(Academic, 1985), p. 700.

Pascale, F.

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
[CrossRef] [PubMed]

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Planken, P. C. M.

Rérat, M.

M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, “Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects,” J. Chem. Phys. 128, 014110 (2008).
[CrossRef] [PubMed]

Richter, H.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Roetti, C.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Rutz, F.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Saunders, V. R.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Scheller, M.

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Sherwin, M. S.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63(2001).
[CrossRef] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
[CrossRef]

Stanley, C. R.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63(2001).
[CrossRef] [PubMed]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Takeda, M. W.

S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals,” Jpn. J. Appl. Phys. 41, 7033–7037 (2002).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

Torres, F. J.

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
[CrossRef] [PubMed]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Tsumura, N.

S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals,” Jpn. J. Appl. Phys. 41, 7033–7037 (2002).
[CrossRef]

Valenzano, L.

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
[CrossRef] [PubMed]

van Exter, M.

Watanabe, Y.

Wenckebach, T.

Wichmann, M.

Wiesauer, K.

Williams, J. B.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63(2001).
[CrossRef] [PubMed]

Yee, D.-S.

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Zhang, X.-C.

S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
[CrossRef]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Zicovich-Wilson, C. M.

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
[CrossRef] [PubMed]

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
[CrossRef]

Int. J. High Speed Electron. Syst. (1)

S. P. Mickan and X.-C. Zhang, “T-ray sensing and imaging,” Int. J. High Speed Electron. Syst. 13, 601–676 (2003).
[CrossRef]

J. Chem. Phys. (2)

C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110, 6158–6170 (1999).
[CrossRef]

M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, “Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects,” J. Chem. Phys. 128, 014110 (2008).
[CrossRef] [PubMed]

J. Comput. Chem. (1)

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi, “Ab initio simulation of the IR spectra of pyrope, grossular and andradite,” J. Comput. Chem. 29, 2268–2278 (2008).
[CrossRef] [PubMed]

J. Infrared Milli. Terahz. Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, “A review of terahertz communications research,” J. Infrared Milli. Terahz. Waves 32, 143–171 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals,” Jpn. J. Appl. Phys. 41, 7033–7037 (2002).
[CrossRef]

Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Nat. Photon. (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

Nature (1)

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63(2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Other (7)

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

E. D. Palik, Handbook of Optical Constants of Solids II(Academic, 1985), p. 765.

E. D. Palik, Handbook of Optical Constants of Solids I(Academic, 1985), p. 700.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, 2009).

http://www.makeitfrom.com/data/?material=Alumina.

http://www.crystal.unito.it/Basis_Sets/Ptable.html.

ICSD (International Crystal Structure database) website, ID 5674 for Al2O3 and ID 11588 for LiNbO3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the experimental configuration. PCA, photoconductive antenna; WP, Wollaston prism; QWP, quarter waveplate; Pellicle b/s, Pellicle beamsplitter; o, ordinary axis; and e, extraordinary axis. The directions of the generated and detected THz polarizations are depicted beside the THz emission and detection parts, respectively. The inset shows the angles of the THz and probe beam polarization directions with respect to the ( 001 ) axis of the ZnTe crystal.

Fig. 2
Fig. 2

THz polarization-dependent THz time- domain waveforms (arbitrary units) measured with varying the THz polarization angle α with respect to the ( 001 ) axis of the ZnTe crystal.

Fig. 3
Fig. 3

Transmitted THz time-domain waveforms (arbitrary units) measured with varying the azimuthal angle θ of the LiNbO 3 .

Fig. 4
Fig. 4

Measurement of THz waveforms with and without the sample. The frequency-dependent refractive index of the sample, n ˜ s ( ω ) , is obtained from Eqs. (2, 3).

Fig. 5
Fig. 5

Dispersion of measured ordinary and extraordinary refractive indices of Al 2 O 3 and LiNbO 3 . The extraordinary and ordinary waves are indicated by the red and blue curves, respectively.

Fig. 6
Fig. 6

Dispersion of calculated ordinary and extraordinary refractive indices of Al 2 O 3 and LiNbO 3 by using an ab initio calculation. The extraordinary and ordinary waves are indicated by the red and blue curves, respectively.

Tables (1)

Tables Icon

Table 1 Measured and Calculated Refractive Indices of Al 2 O 3 and LiNbO 3 at 1 THz

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ I ( α , φ ) = I P ω n 3 E THz r 41 L 2 c ( cos α sin 2 φ + 2 sin α cos 2 φ ) ,
E ˜ sample ( ω ) E ˜ reference ( ω ) = n ˜ s ( ω ) ( n ˜ 1 + n ˜ 2 ) ( n ˜ 2 + n ˜ 3 ) n ˜ 2 ( n ˜ 1 + n ˜ s ( ω ) ) ( n ˜ s ( ω ) + n ˜ 3 ) e i ( n ˜ s ( ω ) n ˜ 2 ) ω L / c = ρ ( ω ) e i ϕ ( ω ) ,
n s ( ω ) = 1 + c φ ( ω ) ω d ,

Metrics