Abstract

We have investigated the dynamics of the record–erase process of holograms in photochromic glass using continuum Nd:YVO4 laser radiation (λ=532nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, Δn) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008).
    [CrossRef] [PubMed]
  2. J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
    [CrossRef]
  3. R. Hadjoudj, H. Monnier, C. Roizard, and F. Lapicque, “Measurements of diffusivity of chlorinated VOCs in heavy absorption solvents using a laminar falling film contactor,” Chem. Eng. Process. 47, 1478–1483 (2008).
    [CrossRef]
  4. F. P. Price, P. T. Gilmore, E. L. Thomas, and R. L. Laurence, “Polymer–polymer diffusion: experimental technique,” J. Polym. Sci. 67, 33–44 (2007).
    [CrossRef]
  5. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819(2010).
    [CrossRef] [PubMed]
  6. E. Pavel, I. N. Mihailescu, A. Hening, V. I. Vlad, L. Tugulea, L. Diamandescu, I. Bibicu, and M. Chipara, “Three-dimensional memory effect in fluorescent photosensitive glass activated by europium and cerium,” Opt. Lett. 23, 1304–1306 (1998).
    [CrossRef]
  7. E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
    [CrossRef]
  8. A. P. Yakimovich, “Three-dimensional holographic display,” Sov. J. Quantum Electron. 11, 78–81 (1981).
    [CrossRef]
  9. A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, “Encoded reference wave security holograms with enhanced features,” J. Opt. A: Pure Appl. Opt. 6, 278–281(2004).
    [CrossRef]
  10. G. W. Burr, “Volumetric storage,” in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Marcel Dekker, 2003).
  11. C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007).
    [CrossRef]
  12. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
    [CrossRef] [PubMed]
  13. C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express 17, 18279–18291 (2009).
    [CrossRef]
  14. J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomisation,” J. Opt. A: Pure Appl. Opt. 8, 236–243 (2006).
    [CrossRef]
  15. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’ Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004(2005).
    [CrossRef] [PubMed]
  16. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41, 845–852 (2002).
    [CrossRef] [PubMed]
  17. J. Lawrence, F. O’Neill, and J. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
    [CrossRef]
  18. J. T. Sheridan and J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  19. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
    [CrossRef]
  20. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
    [CrossRef] [PubMed]
  21. D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modeling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
    [CrossRef]
  22. C. Carre and D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. III 3, 1445–1460 (1993).
    [CrossRef]
  23. C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992).
    [CrossRef]
  24. D. J. Lougnot and C. Turck, “Photopolymers for holographic recording. III. time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–280 (1992).
    [CrossRef]
  25. Zs. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15, 1732–1737 (2007).
    [CrossRef] [PubMed]
  26. H.M.Smith, ed., Holographic Recording Materials, Topics in Applied Physics, Vol.  20 (Springer-Verlag, 1977).
  27. H. I. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences, Vol.  66 (Springer-Verlag, 1993).
  28. P. Hariharan, Optical Holography: Principles, Techniques and Applications, Cambridge Studies in Modern Optics(Cambridge University Press, 1984).
  29. D. Levy, “Recent applications of photochromic sol-gel materials,” Molec. Cryst. Liq. Cryst. 297, 31–39 (1997).
    [CrossRef]
  30. D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96, 153303 (2010).
    [CrossRef]
  31. W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154(1964).
    [CrossRef] [PubMed]
  32. J. P. Kirk, “Hologram on photochromic glass,” Appl. Opt. 5, 1684–1685 (1966).
    [CrossRef] [PubMed]
  33. W. J. Baldwin, “Determination of the information storage capacity of photochromic glass with holography,” Appl. Opt. 6, 1428–1428 (1967).
    [CrossRef] [PubMed]
  34. L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials, M.Schwartz, ed. (Wiley, 2002), pp. 770–780.
  35. H. Kogelnik, “ Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  36. J. A. Ferrari and C. D. Perciante, “Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments,” Appl. Opt. 47, 3669–3673(2008).
    [CrossRef] [PubMed]
  37. R. J. Araujo, “Kinetics of bleaching of photochromic glass,” Appl. Opt. 7, 781–786 (1968).
    [CrossRef] [PubMed]
  38. L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
    [CrossRef]
  39. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
    [CrossRef]
  40. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
    [CrossRef]

2011 (1)

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

2010 (5)

2009 (2)

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express 17, 18279–18291 (2009).
[CrossRef]

J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
[CrossRef]

2008 (4)

R. Hadjoudj, H. Monnier, C. Roizard, and F. Lapicque, “Measurements of diffusivity of chlorinated VOCs in heavy absorption solvents using a laminar falling film contactor,” Chem. Eng. Process. 47, 1478–1483 (2008).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

J. A. Ferrari and C. D. Perciante, “Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments,” Appl. Opt. 47, 3669–3673(2008).
[CrossRef] [PubMed]

T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008).
[CrossRef] [PubMed]

2007 (3)

Zs. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15, 1732–1737 (2007).
[CrossRef] [PubMed]

F. P. Price, P. T. Gilmore, E. L. Thomas, and R. L. Laurence, “Polymer–polymer diffusion: experimental technique,” J. Polym. Sci. 67, 33–44 (2007).
[CrossRef]

C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007).
[CrossRef]

2006 (1)

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomisation,” J. Opt. A: Pure Appl. Opt. 8, 236–243 (2006).
[CrossRef]

2005 (1)

2004 (2)

Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef] [PubMed]

A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, “Encoded reference wave security holograms with enhanced features,” J. Opt. A: Pure Appl. Opt. 6, 278–281(2004).
[CrossRef]

2002 (2)

2000 (1)

1998 (2)

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

E. Pavel, I. N. Mihailescu, A. Hening, V. I. Vlad, L. Tugulea, L. Diamandescu, I. Bibicu, and M. Chipara, “Three-dimensional memory effect in fluorescent photosensitive glass activated by europium and cerium,” Opt. Lett. 23, 1304–1306 (1998).
[CrossRef]

1997 (2)

D. Levy, “Recent applications of photochromic sol-gel materials,” Molec. Cryst. Liq. Cryst. 297, 31–39 (1997).
[CrossRef]

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modeling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

1993 (1)

C. Carre and D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. III 3, 1445–1460 (1993).
[CrossRef]

1992 (2)

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992).
[CrossRef]

D. J. Lougnot and C. Turck, “Photopolymers for holographic recording. III. time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–280 (1992).
[CrossRef]

1981 (1)

A. P. Yakimovich, “Three-dimensional holographic display,” Sov. J. Quantum Electron. 11, 78–81 (1981).
[CrossRef]

1969 (1)

H. Kogelnik, “ Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

1968 (1)

1967 (1)

1966 (1)

1964 (1)

W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154(1964).
[CrossRef] [PubMed]

Aggarwal, A. K.

A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, “Encoded reference wave security holograms with enhanced features,” J. Opt. A: Pure Appl. Opt. 6, 278–281(2004).
[CrossRef]

Andronescu, E.

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

Araujo, R. J.

Armistead, W. H.

W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154(1964).
[CrossRef] [PubMed]

Babeva, T.

Bair, H.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Baldwin, W. J.

Becker, J.

J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
[CrossRef]

Beléndez, A.

Bibicu, I.

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences, Vol.  66 (Springer-Verlag, 1993).

Blanche, P.-A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Boden, E. P.

C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007).
[CrossRef]

Boyd, C.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Brunel, M.

Büchi, F. N.

J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
[CrossRef]

Burr, G. W.

G. W. Burr, “Volumetric storage,” in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Marcel Dekker, 2003).

Carre, C.

C. Carre and D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. III 3, 1445–1460 (1993).
[CrossRef]

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992).
[CrossRef]

Chhachhia, D. P.

A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, “Encoded reference wave security holograms with enhanced features,” J. Opt. A: Pure Appl. Opt. 6, 278–281(2004).
[CrossRef]

Chipara, M.

Close, C. E.

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomisation,” J. Opt. A: Pure Appl. Opt. 8, 236–243 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’ Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004(2005).
[CrossRef] [PubMed]

Coëtmellec, S.

Dhar, L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Diamandescu, L.

Dietz, E.

Erben, C.

C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007).
[CrossRef]

Ferrari, J. A.

Flores, D.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Flückiger, R.

J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
[CrossRef]

Fourkas, J. T.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96, 153303 (2010).
[CrossRef]

Frohmann, S.

Gallego, S.

Gilmore, P. T.

F. P. Price, P. T. Gilmore, E. L. Thomas, and R. L. Laurence, “Polymer–polymer diffusion: experimental technique,” J. Polym. Sci. 67, 33–44 (2007).
[CrossRef]

Glebov, L. B.

L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials, M.Schwartz, ed. (Wiley, 2002), pp. 770–780.

Gleeson, M. R.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomisation,” J. Opt. A: Pure Appl. Opt. 8, 236–243 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’ Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004(2005).
[CrossRef] [PubMed]

Gu, T.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Guo, J.

Hadjoudj, R.

R. Hadjoudj, H. Monnier, C. Roizard, and F. Lapicque, “Measurements of diffusivity of chlorinated VOCs in heavy absorption solvents using a laminar falling film contactor,” Chem. Eng. Process. 47, 1478–1483 (2008).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Holography: Principles, Techniques and Applications, Cambridge Studies in Modern Optics(Cambridge University Press, 1984).

Hening, A.

Howard, R.

Ionescu, L.

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

Jallapuram, R.

Jinga, S.

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

Jost, P.

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modeling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Kaura, S. K.

A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, “Encoded reference wave security holograms with enhanced features,” J. Opt. A: Pure Appl. Opt. 6, 278–281(2004).
[CrossRef]

Kelly, J. V.

Kirk, J. P.

Kogelnik, H.

H. Kogelnik, “ Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Koppa, P.

Lapicque, F.

R. Hadjoudj, H. Monnier, C. Roizard, and F. Lapicque, “Measurements of diffusivity of chlorinated VOCs in heavy absorption solvents using a laminar falling film contactor,” Chem. Eng. Process. 47, 1478–1483 (2008).
[CrossRef]

Laurence, R. L.

F. P. Price, P. T. Gilmore, E. L. Thomas, and R. L. Laurence, “Polymer–polymer diffusion: experimental technique,” J. Polym. Sci. 67, 33–44 (2007).
[CrossRef]

Lavielle, L.

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modeling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Lawrence, B. L.

C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007).
[CrossRef]

Lawrence, J.

Lawrence, J. R.

Lebrun, D.

Leclere, P.

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992).
[CrossRef]

Levy, D.

D. Levy, “Recent applications of photochromic sol-gel materials,” Molec. Cryst. Liq. Cryst. 297, 31–39 (1997).
[CrossRef]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Lin, W.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Lion, Y.

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992).
[CrossRef]

Liu, S.

Longley, K. L.

C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007).
[CrossRef]

Lougnot, D.

C. Carre and D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. III 3, 1445–1460 (1993).
[CrossRef]

Lougnot, D. J.

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modeling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

D. J. Lougnot and C. Turck, “Photopolymers for holographic recording. III. time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–280 (1992).
[CrossRef]

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992).
[CrossRef]

Mackey, D.

Marone, F.

J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
[CrossRef]

Martin, S.

Mazilu, C.

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

Mihailescu, I. N.

Mihailescu, M.

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

Monnier, H.

R. Hadjoudj, H. Monnier, C. Roizard, and F. Lapicque, “Measurements of diffusivity of chlorinated VOCs in heavy absorption solvents using a laminar falling film contactor,” Chem. Eng. Process. 47, 1478–1483 (2008).
[CrossRef]

Nagy, Zs.

Naydenova,

Naydenova, I.

Neipp, C.

Nicolae, V. B.

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

Norwood, R. A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

O’ Neill, F. T.

O’Neill, F.

O’Neill, F. T.

Orlic, S.

Ortuño, M.

Pascual, I.

Pavel, E.

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

E. Pavel, I. N. Mihailescu, A. Hening, V. I. Vlad, L. Tugulea, L. Diamandescu, I. Bibicu, and M. Chipara, “Three-dimensional memory effect in fluorescent photosensitive glass activated by europium and cerium,” Opt. Lett. 23, 1304–1306 (1998).
[CrossRef]

Perciante, C. D.

Peyghambarian, N.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Price, F. P.

F. P. Price, P. T. Gilmore, E. L. Thomas, and R. L. Laurence, “Polymer–polymer diffusion: experimental technique,” J. Polym. Sci. 67, 33–44 (2007).
[CrossRef]

Remacha, C.

Renotte, Y.

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992).
[CrossRef]

Reum, M.

J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
[CrossRef]

Roizard, C.

R. Hadjoudj, H. Monnier, C. Roizard, and F. Lapicque, “Measurements of diffusivity of chlorinated VOCs in heavy absorption solvents using a laminar falling film contactor,” Chem. Eng. Process. 47, 1478–1483 (2008).
[CrossRef]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Rotiu, E.

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

Schilling, M.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Schones, M. G.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Sharma, A. K.

A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, “Encoded reference wave security holograms with enhanced features,” J. Opt. A: Pure Appl. Opt. 6, 278–281(2004).
[CrossRef]

Sheridan, J.

Sheridan, J. T.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express 17, 18279–18291 (2009).
[CrossRef]

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomisation,” J. Opt. A: Pure Appl. Opt. 8, 236–243 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’ Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004(2005).
[CrossRef] [PubMed]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41, 845–852 (2002).
[CrossRef] [PubMed]

J. T. Sheridan and J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Shi, X.

C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007).
[CrossRef]

Solomon, G.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96, 153303 (2010).
[CrossRef]

Sridharan, D.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96, 153303 (2010).
[CrossRef]

St. Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Stampanoni, M.

J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
[CrossRef]

Stookey, S. D.

W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154(1964).
[CrossRef] [PubMed]

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Thomas, E. L.

F. P. Price, P. T. Gilmore, E. L. Thomas, and R. L. Laurence, “Polymer–polymer diffusion: experimental technique,” J. Polym. Sci. 67, 33–44 (2007).
[CrossRef]

Thomas, J.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Toal, V.

Tugulea, L.

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Turck, C.

D. J. Lougnot and C. Turck, “Photopolymers for holographic recording. III. time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–280 (1992).
[CrossRef]

Ujhelyi, F.

Verrier, N.

Vlad, V. I.

Voorakaranam, R.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Waks, E.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96, 153303 (2010).
[CrossRef]

Wang, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Wysocki, T. L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Yakimovich, A. P.

A. P. Yakimovich, “Three-dimensional holographic display,” Sov. J. Quantum Electron. 11, 78–81 (1981).
[CrossRef]

Yamamoto, M.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (2)

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96, 153303 (2010).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “ Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Chem. Eng. Process. (1)

R. Hadjoudj, H. Monnier, C. Roizard, and F. Lapicque, “Measurements of diffusivity of chlorinated VOCs in heavy absorption solvents using a laminar falling film contactor,” Chem. Eng. Process. 47, 1478–1483 (2008).
[CrossRef]

J. Electrochem. Soc. (1)

J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009).
[CrossRef]

J. Opt. (1)

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomisation,” J. Opt. A: Pure Appl. Opt. 8, 236–243 (2006).
[CrossRef]

A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, “Encoded reference wave security holograms with enhanced features,” J. Opt. A: Pure Appl. Opt. 6, 278–281(2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. III (1)

C. Carre and D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. III 3, 1445–1460 (1993).
[CrossRef]

J. Polym. Sci. (1)

F. P. Price, P. T. Gilmore, E. L. Thomas, and R. L. Laurence, “Polymer–polymer diffusion: experimental technique,” J. Polym. Sci. 67, 33–44 (2007).
[CrossRef]

Macromolecules (1)

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

Molec. Cryst. Liq. Cryst. (1)

D. Levy, “Recent applications of photochromic sol-gel materials,” Molec. Cryst. Liq. Cryst. 297, 31–39 (1997).
[CrossRef]

Nature (1)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Pure Appl. Opt. (2)

D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modeling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997).
[CrossRef]

D. J. Lougnot and C. Turck, “Photopolymers for holographic recording. III. time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–280 (1992).
[CrossRef]

Science (1)

W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154(1964).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

A. P. Yakimovich, “Three-dimensional holographic display,” Sov. J. Quantum Electron. 11, 78–81 (1981).
[CrossRef]

Other (5)

G. W. Burr, “Volumetric storage,” in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Marcel Dekker, 2003).

H.M.Smith, ed., Holographic Recording Materials, Topics in Applied Physics, Vol.  20 (Springer-Verlag, 1977).

H. I. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences, Vol.  66 (Springer-Verlag, 1993).

P. Hariharan, Optical Holography: Principles, Techniques and Applications, Cambridge Studies in Modern Optics(Cambridge University Press, 1984).

L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials, M.Schwartz, ed. (Wiley, 2002), pp. 770–780.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Grid image as seen through the photochromic glass disk.

Fig. 3
Fig. 3

Time evolution of the images reconstructed from the hologram stored in the photochromic glass disk.

Fig. 4
Fig. 4

Diffraction efficiency decay versus reconstruction time for holograms recorded at different incident laser power: (a) 0.46, (b) 0.45, and (c)  0.44 W .

Fig. 5
Fig. 5

(a) First frame of the movie of the central intensity decay in simulation conditions that fits the experimental data. (b) Experimental diffraction efficiency (blue dots) and simulated diffraction efficiency (red continuous curve) versus time after modeling the diffusion process using the FDTD method in MATLAB.

Fig. 6
Fig. 6

Diffraction efficiency in the reconstruction process after: first (×) and second (*) rewriting processes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ag + + Cu + Ag 0 + Cu 2 + .
I = | R + O | 2 = | R | 2 + | O | 2 + R * O + R O * ,
U = R I = R | R | 2 + R | O | 2 + | R | 2 O + R 2 O * .
η rel = I d I o + I d ,
Δ n = λ cos ( α ) arcsin ( η rel ) 2 d π ,
n ( ω ) = 1 + c π φ 0 α ( ω ) Ω 2 ω 2 d Ω ,
c ( x , y , z , t ) t D [ 2 c ( x , y , z , t ) x 2 + 2 c ( x , y , z , t ) y 2 + 2 c ( x , y , z , t ) z 2 ] = γ I

Metrics