Abstract

The concept of retardance is critically analyzed for ray paths through optical systems described by a three-by-three polarization ray-tracing matrix. Algorithms are presented to separate the effects of retardance from geometric transformations. The geometric transformation described by a “parallel transport matrix” characterizes nonpolarizing propagation through an optical system, and also provides a proper relationship between sets of local coordinates along the ray path. The proper retardance is calculated by removing this geometric transformation from the three-by-three polarization ray-tracing matrix. Two rays with different ray paths through an optical system can have the same polarization ray-tracing matrix but different retardances. The retardance and diattenuation of an aluminum-coated three fold-mirror system are analyzed as an example.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription