Abstract

In this study, we investigated the enhanced sensing performance of a localized surface plasmon resonance (LSPR) biosensor by employing metal-dielectric double-layered subwavelength grating structures. The numerical results showed that the LSPR substrate with a dielectric spacer can provide not only a better sensitivity but also a significantly improved reflectance characteristic. While the presence of metallic gratings leads to a broad and shallow reflectance curve inevitably, the dielectric spacer can prevent the propagating surface plasmons from being interfered by the locally enhanced fields excited at the gold gratings, finally resulting in a strong and deep absorption band at resonance. Therefore, the proposed structure could potentially open a new possibility of the enhanced LSPR detection for monitoring biomolecular interactions of low molecular weights.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
    [CrossRef]
  2. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  3. E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
    [CrossRef]
  4. T. Srivastava, R. Das, and R. Jha, “Design considerations and propagation characteristics of channel Bragg-plasmon-coupled-waveguides,” Appl. Phys. Lett. 97, 213104 (2010).
    [CrossRef]
  5. H. J. Lee, T. T. Goodrich, and R. M. Corn, “SPR imaging measurement of 1D and 2D DNA micro-arrays created from microfluidic channels on gold thin films,” Anal. Chem. 73, 5525–5531 (2001).
    [CrossRef]
  6. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  7. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31, 2613–2615(2006).
    [CrossRef] [PubMed]
  8. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
    [CrossRef]
  9. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
    [CrossRef] [PubMed]
  10. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
    [CrossRef]
  11. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
    [CrossRef] [PubMed]
  12. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
    [CrossRef]
  13. C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92, 133–136 (2003).
    [CrossRef]
  14. A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
    [CrossRef]
  15. A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
    [CrossRef]
  16. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34, 749–751(2009).
    [CrossRef] [PubMed]
  17. R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
    [CrossRef]
  18. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
    [CrossRef] [PubMed]
  19. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
    [CrossRef] [PubMed]
  20. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
    [CrossRef]
  21. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
    [CrossRef] [PubMed]
  22. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  23. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993).
    [CrossRef]
  24. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993).
    [CrossRef]
  25. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nmperiod silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143(2001).
    [CrossRef]
  26. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
    [CrossRef] [PubMed]
  27. E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
    [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  29. L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).
    [CrossRef] [PubMed]
  30. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  31. S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207 (2006).
    [CrossRef]
  32. D. Kim and S. J. Yoon, “Effective medium based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872–880 (2007).
    [CrossRef] [PubMed]
  33. J. Fu, B. Park, and Y. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009).
    [CrossRef] [PubMed]
  34. D. Dalacu and L. Martinu, “Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films,” J. Appl. Phys. 87, 228–235 (2000).
    [CrossRef]
  35. S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Opt. Lett. 29, 1390–1392 (2004).
    [CrossRef] [PubMed]
  36. S. H. Choi and K. M. Byun, “Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection,” J. Opt. Soc. Am. A 27, 2229–2236 (2010).
    [CrossRef]

2010

T. Srivastava, R. Das, and R. Jha, “Design considerations and propagation characteristics of channel Bragg-plasmon-coupled-waveguides,” Appl. Phys. Lett. 97, 213104 (2010).
[CrossRef]

S. H. Choi and K. M. Byun, “Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection,” J. Opt. Soc. Am. A 27, 2229–2236 (2010).
[CrossRef]

2009

2008

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[CrossRef]

2007

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

D. Kim and S. J. Yoon, “Effective medium based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872–880 (2007).
[CrossRef] [PubMed]

2006

2005

2004

2003

S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
[CrossRef] [PubMed]

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92, 133–136 (2003).
[CrossRef]

2001

H. J. Lee, T. T. Goodrich, and R. M. Corn, “SPR imaging measurement of 1D and 2D DNA micro-arrays created from microfluidic channels on gold thin films,” Anal. Chem. 73, 5525–5531 (2001).
[CrossRef]

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nmperiod silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143(2001).
[CrossRef]

2000

D. Dalacu and L. Martinu, “Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films,” J. Appl. Phys. 87, 228–235 (2000).
[CrossRef]

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

1998

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef] [PubMed]

1997

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

1993

1988

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

1986

1978

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

1972

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

1968

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

1956

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Atkinson, A.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).
[CrossRef] [PubMed]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Byun, K. M.

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Cha, S.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Chang, L. B.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92, 133–136 (2003).
[CrossRef]

Chen, S.-J.

Chien, F. C.

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Choi, S. H.

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Corn, R. M.

H. J. Lee, T. T. Goodrich, and R. M. Corn, “SPR imaging measurement of 1D and 2D DNA micro-arrays created from microfluidic channels on gold thin films,” Anal. Chem. 73, 5525–5531 (2001).
[CrossRef]

Dalacu, D.

D. Dalacu and L. Martinu, “Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films,” J. Appl. Phys. 87, 228–235 (2000).
[CrossRef]

Das, R.

T. Srivastava, R. Das, and R. Jha, “Design considerations and propagation characteristics of channel Bragg-plasmon-coupled-waveguides,” Appl. Phys. Lett. 97, 213104 (2010).
[CrossRef]

Du, J.

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Fendler, J. H.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Fu, J.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

Gaylord, T. K.

Goodrich, T. T.

H. J. Lee, T. T. Goodrich, and R. M. Corn, “SPR imaging measurement of 1D and 2D DNA micro-arrays created from microfluidic channels on gold thin films,” Anal. Chem. 73, 5525–5531 (2001).
[CrossRef]

Guo, X.

Guo, Y.

Gupta, B. D.

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[CrossRef]

Haggans, C. W.

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nmperiod silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143(2001).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

Hutter, E.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Jha, R.

T. Srivastava, R. Das, and R. Jha, “Design considerations and propagation characteristics of channel Bragg-plasmon-coupled-waveguides,” Appl. Phys. Lett. 97, 213104 (2010).
[CrossRef]

R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34, 749–751(2009).
[CrossRef] [PubMed]

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[CrossRef]

Jian, Z. C.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92, 133–136 (2003).
[CrossRef]

Joe, S. F.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92, 133–136 (2003).
[CrossRef]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nmperiod silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143(2001).
[CrossRef]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Kim, D.

Kim, D. J.

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef] [PubMed]

Kim, K.

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef] [PubMed]

Kim, P. S.

Kim, S. J.

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

Lee, G.

Lee, H. J.

H. J. Lee, T. T. Goodrich, and R. M. Corn, “SPR imaging measurement of 1D and 2D DNA micro-arrays created from microfluidic channels on gold thin films,” Anal. Chem. 73, 5525–5531 (2001).
[CrossRef]

Lee, K. C.

Li, L.

Lin, G. Y.

Liu, J. F.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Lyon, L. A.

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef] [PubMed]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Martinu, L.

D. Dalacu and L. Martinu, “Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films,” J. Appl. Phys. 87, 228–235 (2000).
[CrossRef]

Mirkin, C. A.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).
[CrossRef] [PubMed]

Moharam, M. G.

Moon, S.

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef] [PubMed]

S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207 (2006).
[CrossRef]

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef] [PubMed]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef] [PubMed]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Nikitin, P. I.

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Oh, C. H.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Park, B.

Park, J.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Park, S.

Piliarik, M.

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Qin, L.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).
[CrossRef] [PubMed]

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Roy, D.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sai, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nmperiod silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143(2001).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

Schatz, G. C.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).
[CrossRef] [PubMed]

Sharma, A. K.

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Song, S. H.

Srivastava, T.

T. Srivastava, R. Das, and R. Jha, “Design considerations and propagation characteristics of channel Bragg-plasmon-coupled-waveguides,” Appl. Phys. Lett. 97, 213104 (2010).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

Verma, R. K.

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[CrossRef]

Wu, C. M.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92, 133–136 (2003).
[CrossRef]

Xue, C.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).
[CrossRef] [PubMed]

Yao, J.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Yi, J.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Yoon, S. J.

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nmperiod silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143(2001).
[CrossRef]

Zhao, Y.

Zou, S.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).
[CrossRef] [PubMed]

Anal. Chem.

H. J. Lee, T. T. Goodrich, and R. M. Corn, “SPR imaging measurement of 1D and 2D DNA micro-arrays created from microfluidic channels on gold thin films,” Anal. Chem. 73, 5525–5531 (2001).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nmperiod silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143(2001).
[CrossRef]

T. Srivastava, R. Das, and R. Jha, “Design considerations and propagation characteristics of channel Bragg-plasmon-coupled-waveguides,” Appl. Phys. Lett. 97, 213104 (2010).
[CrossRef]

Biosens. Bioelectron.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000).
[CrossRef]

J. Appl. Phys.

D. Dalacu and L. Martinu, “Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films,” J. Appl. Phys. 87, 228–235 (2000).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Langmuir

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Nanotechnology

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef] [PubMed]

Nature

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Opt. Commun.

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Plasmonics

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. USA

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).
[CrossRef] [PubMed]

Quantum Electron.

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Rep. Prog. Phys.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Sens. Actuators B Chem.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92, 133–136 (2003).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Surf. Sci.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Z. Phys.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Supplementary Material (1)

» Media 1: AVI (2387 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of a DG-LSPR substrate. TM- polarized light with λ = 633 nm propagating into an SF10 glass is incident through an attachment layer of chromium ( 2 nm ), a thin gold film ( 40 nm ), SiO 2 dielectric spacers ( d S ), and gold gratings ( d G ). Gold– SiO 2 grating structures of a rectangular profile have a width of w G and a period of Λ. A 1 - nm -thick SAM layer is assumed to cover the whole substrate surface uniformly.

Fig. 2
Fig. 2

SPR curves of an SG-LSPR substrate. Gold gratings have a period Λ of (a)  50 nm and (b)  100 nm when a duty cycle increases from 0.1 to 0.9 with a step of 0.1.

Fig. 3
Fig. 3

SEF characteristics of a DG-LSPR substrate with respect to the duty cycle as a dielectric spacer thickness increases when Λ is (a)  50 nm and (b)  100 nm .

Fig. 4
Fig. 4

Minimum reflectance characteristics of a DG-LSPR substrate with respect to the duty cycle as a dielectric spacer thickness increases when Λ is (a)  50 nm and (b)  100 nm .

Fig. 5
Fig. 5

Horizontal field intensity distributions of E Z for (a) SG-LSPR and (b) DG-LSPR structures with a gold grating of Λ = 50 nm , duty cycle = 0.2 , d G = 20 nm , and a dielectric spacer of d S = 40 nm . The insets are two-dimensional images obtained from the FDTD calculations normalized by the field intensity of 15.

Fig. 6
Fig. 6

(Media 1) The field distribution of E X for the optimal DG-LSPR structure shown in Fig. 5b. The FDTD calculation results are normalized by a value of 5.

Fig. 7
Fig. 7

Six-layer system of the DG-LSPR biosensor and its equivalent EMT model.

Fig. 8
Fig. 8

SPR curves of SG- and DG-LSPR structures calculated by RCWA (solid curve) and fitting-based EMT (dotted curve) when a period Λ = 100 nm , duty cycle = 0.5 , and d S = 90 nm .

Fig. 9
Fig. 9

Phase profiles of field elements reflected at each interface of (a) SG-LSPR and (b) DG-LSPR structures. The solid curves indicate the total reflectance.

Fig. 10
Fig. 10

Linear regression analyses between the resonance angle and the refractive index of a 1 - nm -thick SAM in PBS solution for conventional gold substrate (circle) and optimal DG-LSPR substrate (square) with the highest SEF of 12.53 at Λ = 50 nm , duty cycle = 0.2 , d S = 40 nm , and d G = 20 nm . As the refractive index increases from 1.33 to 1.70, the SPR angle shifts with a high linearity in both cases, and, in particular, the sensitivity of the proposed DG-LSPR structure is 13 times greater than that of a conventional SPR substrate.

Tables (2)

Tables Icon

Table 1 SEF Values of SG-LSPR Structures

Tables Icon

Table 2 Maximum Intensity of E Z Calculated for SG- and DG-LSPR Structures

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S = I 01 L 1 I 12 L 2 I 23 L 3 I 34 L 4 I 45 = ( S 11 S 12 S 21 S 22 ) ,
I j k = ( 1 r j k r j k 1 ) ,
L j = ( e i k z j d j 0 0 e i k z j d j ) .
r j k = ( k z j ε j k j k ε k ) ( k z j ε j + k j k ε k ) ,
k z j = ε j ( ω c ) 2 k x with     k x = ε 0 ω c sin θ ,
R = | S 12 S 22 | 2 .

Metrics