Abstract

Slightly off-axis interferometry for microscopy has been performed, where the dc term of the interferogram is suppressed by the object wave in another wavelength. One wavelength of the laser beam (red light) is used to generate the slightly off-axis interferogram, while the second wavelength (blue light) is employed to measure the transmittance of the specimen. Both the red light and blue light are recorded simultaneously by a color CCD camera and can be separated without cross talk via the red–green–blue components. The dc term of the slightly off-axis interferogram of red light is suppressed with the object wave of blue light. As a consequence, the requirement on the off-axis angle between the object and reference waves is relaxed as well as the requirement on the resolving power of CCD camera.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  2. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432(1983).
    [CrossRef] [PubMed]
  3. J. Schwider, “Continuous lateral shearing interferometer,” Appl. Opt. 23, 4403–4409 (1984).
    [CrossRef] [PubMed]
  4. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]
  5. P. J. de Groot, “Grating interferometer for flatness testing,” Opt. Lett. 21, 228–230 (1996).
    [CrossRef] [PubMed]
  6. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  7. P. Gao, B. L. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34, 3553–3555 (2009).
    [CrossRef] [PubMed]
  8. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
    [CrossRef] [PubMed]
  9. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).
    [CrossRef] [PubMed]
  10. T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography,” Opt. Express 18, 9555–9560 (2010).
    [CrossRef] [PubMed]
  11. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
    [CrossRef] [PubMed]
  12. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  13. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  14. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [CrossRef] [PubMed]
  15. W. J. Qu, K. Bhattacharya, C. Q. Choo, Y. J. Yu, and A. Asundi, “Transmission digital holographic microscopy based on a beam-splitter cube interferometer,” Appl. Opt. 48, 2778–2783(2009).
    [CrossRef] [PubMed]
  16. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [CrossRef] [PubMed]
  17. P. Gao, B. L. Yao, J. H. Han, L. J. Chen, Y. L. Wang, and M. Lei, “Phase and amplitude reconstruction from a single carrier-frequency interferogram without phase unwrapping,” Appl. Opt. 47, 2760–2766 (2008).
    [CrossRef] [PubMed]
  18. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
    [CrossRef]
  19. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160(1982).
    [CrossRef]
  20. G.-L. Chen, C.-Y. Lin, M.-K. Kuo, and C.-C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15, 8851–8856 (2007).
    [CrossRef] [PubMed]
  21. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
    [CrossRef] [PubMed]
  22. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–769 (2009).
    [CrossRef] [PubMed]
  23. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
    [CrossRef] [PubMed]
  24. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973).
    [CrossRef] [PubMed]
  25. F. Bien, M. Camac, H. J. Caulfield, and S. Ezekiel, “Absolute distance measurements by variable wavelength interferometry,” Appl. Opt. 20, 400–402 (1981).
    [CrossRef] [PubMed]
  26. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
    [CrossRef] [PubMed]
  27. B. P. Hildebrand and K. A. Haines, “Multiple-wavelength and multiple-source holography applied to contour generation,” J. Opt. Soc. Am. 57, 155–162 (1967).
    [CrossRef]
  28. J. S. Zelenka and J. R. Varner, “A new method for generating depth contours holographically,” Appl. Opt. 7, 2107–2110(1968).
    [CrossRef] [PubMed]
  29. J. C. Wyant, “Testing aspherics using two-wavelength holography,” Appl. Opt. 10, 2113–2118 (1971).
    [CrossRef] [PubMed]
  30. L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004).
    [CrossRef] [PubMed]
  31. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
    [CrossRef] [PubMed]
  32. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005).
    [CrossRef] [PubMed]
  33. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190(2006).
    [CrossRef]
  34. K. Choi, H. Kim, and B. Lee, “Full-colour autostereoscopic 3D display system using colour-dispersion-compensated synthetic phase holograms,” Opt. Express 12, 5229–5236 (2004).
    [CrossRef] [PubMed]
  35. P. Avakian, W. Y. Hsu, P. Meakin, and H. L. Snyder, “Optical absorption spectrum of PMMA via laser calorimetry,” J. Polym. Sci. B Polym. Phys. 21, 647–655 (1983).
    [CrossRef]

2010

2009

2008

2007

2006

2005

2004

2000

1999

1997

1996

1994

1988

1984

1983

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432(1983).
[CrossRef] [PubMed]

P. Avakian, W. Y. Hsu, P. Meakin, and H. L. Snyder, “Optical absorption spectrum of PMMA via laser calorimetry,” J. Polym. Sci. B Polym. Phys. 21, 647–655 (1983).
[CrossRef]

1982

1981

1973

1971

1968

1967

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

B. P. Hildebrand and K. A. Haines, “Multiple-wavelength and multiple-source holography applied to contour generation,” J. Opt. Soc. Am. 57, 155–162 (1967).
[CrossRef]

Alfieri, D.

Arfire, C.

Aspert, N.

Asundi, A.

Avakian, P.

P. Avakian, W. Y. Hsu, P. Meakin, and H. L. Snyder, “Optical absorption spectrum of PMMA via laser calorimetry,” J. Polym. Sci. B Polym. Phys. 21, 647–655 (1983).
[CrossRef]

Awatsuji, Y.

Bergoënd, I.

Bhattacharya, K.

Bien, F.

Bourquin, S.

Burow, R.

Cai, L. Z.

Camac, M.

Caulfield, H. J.

Chang, C.-C.

Charrière, F.

Chen, G.-L.

Chen, L. J.

Choi, K.

Choo, C. Q.

Colomb, T.

Cuche, E.

Dändliker, R.

Dasari, R. R.

de Groot, P. J.

De Nicola, S.

Depeursinge, C.

Dong, G. Y.

Elssner, K.-E.

Ezekiel, S.

Feld, M. S.

Ferraro, P.

Finizio, A.

Gao, P.

Geist, E.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Grilli, S.

Grzanna, J.

Haines, K. A.

Han, J. H.

Harder, I.

Hildebrand, B. P.

Hsu, W. Y.

P. Avakian, W. Y. Hsu, P. Meakin, and H. L. Snyder, “Optical absorption spectrum of PMMA via laser calorimetry,” J. Polym. Sci. B Polym. Phys. 21, 647–655 (1983).
[CrossRef]

Ikeda, T.

Ina, H.

Ito, K.

Jüptner, W.

Kakue, T.

Kaneko, A.

Kawai, H.

Kemper, B.

Kim, H.

Kim, M.

Kim, M. K.

Kobayashi, S.

Koyama, T.

Kubota, T.

Kühn, J.

Kuo, M.-K.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Lee, B.

Lei, M.

Lin, C.-Y.

Lindlein, N.

Mantel, K.

Marian, A.

Marquet, P.

Matoba, O.

Meakin, P.

P. Avakian, W. Y. Hsu, P. Meakin, and H. L. Snyder, “Optical absorption spectrum of PMMA via laser calorimetry,” J. Polym. Sci. B Polym. Phys. 21, 647–655 (1983).
[CrossRef]

Meng, X. F.

Merkel, K.

Montfort, F.

Moritani, Y.

Nercissian, V.

Nishio, K.

Ohzu, H.

Pavillon, N.

Pierattini, G.

Polhemus, C.

Popescu, G.

Prongué, D.

Qu, W. J.

Rinehart, M. T.

Sansone, L.

Schnars, U.

Schwider, J.

Shaked, N. T.

Shen, X. X.

Shimozato, Y.

Snyder, H. L.

P. Avakian, W. Y. Hsu, P. Meakin, and H. L. Snyder, “Optical absorption spectrum of PMMA via laser calorimetry,” J. Polym. Sci. B Polym. Phys. 21, 647–655 (1983).
[CrossRef]

Spolaczyk, R.

Tahara, T.

Takaki, Y.

Takeda, M.

Thalmann, R.

Ura, S.

Varner, J. R.

von Bally, G.

Wang, Y. L.

Wang, Y. R.

Wax, A.

Wyant, J. C.

Xu, X. F.

Yamaguchi, I.

Yang, X. L.

Yao, B.

Yao, B. L.

Yu, L.

Yu, Y. J.

Zelenka, J. S.

Zhang, T.

Zhu, Y.

Appl. Opt.

J. S. Zelenka and J. R. Varner, “A new method for generating depth contours holographically,” Appl. Opt. 7, 2107–2110(1968).
[CrossRef] [PubMed]

F. Bien, M. Camac, H. J. Caulfield, and S. Ezekiel, “Absolute distance measurements by variable wavelength interferometry,” Appl. Opt. 20, 400–402 (1981).
[CrossRef] [PubMed]

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432(1983).
[CrossRef] [PubMed]

J. Schwider, “Continuous lateral shearing interferometer,” Appl. Opt. 23, 4403–4409 (1984).
[CrossRef] [PubMed]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef] [PubMed]

Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

J. C. Wyant, “Testing aspherics using two-wavelength holography,” Appl. Opt. 10, 2113–2118 (1971).
[CrossRef] [PubMed]

C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973).
[CrossRef] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).
[CrossRef] [PubMed]

P. Gao, B. L. Yao, J. H. Han, L. J. Chen, Y. L. Wang, and M. Lei, “Phase and amplitude reconstruction from a single carrier-frequency interferogram without phase unwrapping,” Appl. Opt. 47, 2760–2766 (2008).
[CrossRef] [PubMed]

W. J. Qu, K. Bhattacharya, C. Q. Choo, Y. J. Yu, and A. Asundi, “Transmission digital holographic microscopy based on a beam-splitter cube interferometer,” Appl. Opt. 48, 2778–2783(2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Polym. Sci. B Polym. Phys.

P. Avakian, W. Y. Hsu, P. Meakin, and H. L. Snyder, “Optical absorption spectrum of PMMA via laser calorimetry,” J. Polym. Sci. B Polym. Phys. 21, 647–655 (1983).
[CrossRef]

Opt. Express

Opt. Lett.

P. Gao, B. L. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34, 3553–3555 (2009).
[CrossRef] [PubMed]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
[CrossRef] [PubMed]

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
[CrossRef] [PubMed]

N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–769 (2009).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[CrossRef] [PubMed]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
[CrossRef] [PubMed]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005).
[CrossRef] [PubMed]

X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
[CrossRef] [PubMed]

P. J. de Groot, “Grating interferometer for flatness testing,” Opt. Lett. 21, 228–230 (1996).
[CrossRef] [PubMed]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. NF 1 , NF 2 , and NF 3 , neutral variable attenuator; P 1 and P 2 , linear polarizers; BS 1 , BS 2 , nonpolarizing beam splitter; M 1 , M 2 , mirrors; BE 1 , BE 2 , beam expanders; MO, microscope objective with magnification M = 40 × and NA = 0.65 ; L 1 , achromatic lens with focal length f 1 = 100 mm .

Fig. 2
Fig. 2

Measurement results of a phase step with two-wavelength slightly off-axis interferometry; (a) recorded two-color hologram of a rectangular phase step; (b) recorded two-color hologram measured in absence of any specimen; (c), (d) separated interferogram of red light and object wave in blue light; (e) frequency spectrum of ( I r I b / γ ) R D ; (f) wrapped phase of specimen; (g) unwrapped phase of setup; (h) reconstructed phase of specimen when the setup phase is subtracted.

Fig. 3
Fig. 3

Measurement results of a PMMA bead with two-wavelength slightly off-axis interferometry; (a) recorded two- color hologram of the PMMA bead; (b), (c) separated interferogram along red light and object wave intensity along blue light; (d), (e) reconstructed amplitude and phase distributions of the specimen.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | O | 2 + | R | 2 + O * R + O R * ,
I γ I Ob = | R | 2 + O * R + O R * .
O r ( x , y , d ) = IFT { FT [ ( I γ I Ob ) R D ] · W ^ ( ξ , η ) } ,

Metrics