Abstract

We propose a continuous wave dual-wavelength-pumped scheme for visible supercontinuum (SC) generation. The scheme is numerically studied in this paper. In the scheme, the dual-wavelength pump source is produced through a four-wave mixing process in a photonic crystal fiber. SC generation is numerically investigated by solving the generalized nonlinear Schrödinger equation. The results verify that the visible SC can be generated by the scheme, which implies that the scheme is promising for generating visible SC with high spectral power densities.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
    [CrossRef] [PubMed]
  2. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
    [CrossRef] [PubMed]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  4. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
    [CrossRef]
  5. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
    [CrossRef] [PubMed]
  6. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
    [CrossRef] [PubMed]
  7. J. C. Travers, R. E. Kennedy, S. V. Popov, and J. R. Taylor, “Extended continuous wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30, 1938–1940 (2005).
    [CrossRef] [PubMed]
  8. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33, 2122–2124 (2008).
    [CrossRef] [PubMed]
  9. A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33, 2407–2409 (2008).
    [CrossRef] [PubMed]
  10. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
    [CrossRef] [PubMed]
  11. A. K. Abeeluck and C. Headley, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous wave Raman fiber laser,” Opt. Lett. 29, 2163–2165 (2004).
    [CrossRef] [PubMed]
  12. T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, “Supercontinuum generation using continuous wave multiwavelength pumping and dispersion management,” Opt. Lett. 31, 2036–2038 (2006).
    [CrossRef] [PubMed]
  13. E. Räikkönen, G. Genty, O. Kimmelma, and M. Kaivola, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
    [CrossRef] [PubMed]
  14. C. L. Xiong, Z. L. Chen, and W. J. Wadsworth, “Dual-wavelength-pumped supercontinuum generation in an all-fiber device,” J. Lightwave Technol. 27, 1638–1643 (2009).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  16. S. B. Cavalcanti and G. P. Agrawal, “Noise amplication in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
    [CrossRef] [PubMed]
  17. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers at cw pump,” Opt. Express 13, 6912–6918(2005).
    [CrossRef] [PubMed]
  18. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring cw supercontinuum generation in microstructured fibers with two-zero-dispersion wavelengths,” Opt. Express 15, 11553–11563 (2007).
    [CrossRef] [PubMed]
  19. V. S. Oleg, H. Ronald, Z. John, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68(2003).
    [CrossRef]
  20. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309(2004).
    [CrossRef] [PubMed]
  21. S. Kunimasa and K. Masanori, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267–274(2005).
    [CrossRef]
  22. D. R. Austin, C. Martijn de Sterke, and B. J. Eggleton, “Dispersive wave blueshift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006).
    [CrossRef] [PubMed]
  23. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
    [CrossRef]

2009

2008

2007

2006

2005

2004

2003

2002

2001

1995

S. B. Cavalcanti and G. P. Agrawal, “Noise amplication in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

Abeeluck, A. K.

A. K. Abeeluck and C. Headley, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous wave Raman fiber laser,” Opt. Lett. 29, 2163–2165 (2004).
[CrossRef] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Agrawal, G. P.

S. B. Cavalcanti and G. P. Agrawal, “Noise amplication in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Austin, D. R.

Avdokhin, A. V.

Beaugeois, M.

Biancalana, F.

Birks, T. A.

Bouazaoui, M.

Cavalcanti, S. B.

S. B. Cavalcanti and G. P. Agrawal, “Noise amplication in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

Chen, Z. L.

Chudoba, C.

Coen, S.

Cumberland, B. A.

Eggleton, B. J.

Fujimoto, J. G.

Genty, G.

Ghanta, R. K.

Goto, T.

Hartl, I.

Headley, C.

A. K. Abeeluck and C. Headley, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous wave Raman fiber laser,” Opt. Lett. 29, 2163–2165 (2004).
[CrossRef] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

John, Z.

Joly, N.

Jorgensen, C. G.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Kaivola, M.

Kalkbrenner, T.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Kennedy, R. E.

Kimmelma, O.

Knight, J. C.

Ko, T. H.

Kobtsev, S. M.

Kudlinski, A.

Kunimasa, S.

Li, P.

Li, X. D.

Lindfors, K.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Liu, Z.

Maillotte, H.

Martijn de Sterke, C.

Masanori, K.

Menyuk, C. R.

Mussot, A.

Nicholson, J. W.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Nishizawa, N.

Oleg, V. S.

Popov, S. V.

Räikkönen, E.

Ranka, J. K.

Ronald, H.

Rulkov, A. B.

Russell, P. St. J.

Sandoghdar, V.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Shi, K.

Smirnov, S. V.

Stoller, P.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Sylvestre, T.

Taylor, J. R.

Travers, J. C.

Vanholsbeeck, F.

Vedadi, A.

Wadsworth, W. J.

Windeler, S.

Xiong, C. L.

Yan, M. F.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Yin, S.

Appl. Phys. B

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Express

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309(2004).
[CrossRef] [PubMed]

S. Kunimasa and K. Masanori, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267–274(2005).
[CrossRef]

D. R. Austin, C. Martijn de Sterke, and B. J. Eggleton, “Dispersive wave blueshift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006).
[CrossRef] [PubMed]

E. Räikkönen, G. Genty, O. Kimmelma, and M. Kaivola, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
[CrossRef] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
[CrossRef] [PubMed]

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
[CrossRef] [PubMed]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
[CrossRef] [PubMed]

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers at cw pump,” Opt. Express 13, 6912–6918(2005).
[CrossRef] [PubMed]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring cw supercontinuum generation in microstructured fibers with two-zero-dispersion wavelengths,” Opt. Express 15, 11553–11563 (2007).
[CrossRef] [PubMed]

Opt. Lett.

A. K. Abeeluck and C. Headley, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous wave Raman fiber laser,” Opt. Lett. 29, 2163–2165 (2004).
[CrossRef] [PubMed]

T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, “Supercontinuum generation using continuous wave multiwavelength pumping and dispersion management,” Opt. Lett. 31, 2036–2038 (2006).
[CrossRef] [PubMed]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
[CrossRef] [PubMed]

J. C. Travers, R. E. Kennedy, S. V. Popov, and J. R. Taylor, “Extended continuous wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30, 1938–1940 (2005).
[CrossRef] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33, 2122–2124 (2008).
[CrossRef] [PubMed]

A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33, 2407–2409 (2008).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
[CrossRef]

Phys. Rev. A

S. B. Cavalcanti and G. P. Agrawal, “Noise amplication in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic scheme of CW dual-wavelength-pumped SC generation in an all-fiber device.

Fig. 2
Fig. 2

Calculated GVD curve of PCF-FWM.

Fig. 3
Fig. 3

FWM process in PCF-FWM: (a) evolution of output spectra with the length of PCF-FWM; (b) output spectra from 50 m PCF-FWM.

Fig. 4
Fig. 4

Group-velocity index curves of PCF-SC1 (upper red curve) and PCF-SC2 (lower green curve). The indices at 687 nm and 1064 nm are marked by the blue crosses.

Fig. 5
Fig. 5

Evolution of the dual-wavelength pump source along (a) PCF-SC1 and (b) PCF-SC2; (c) output spectra from 50 m PCF-SC1 (superimposed green curve) and PCF-SC2 (background red curve).

Fig. 6
Fig. 6

Soliton self-frequency shift with length of PCF-SC1. The outermost soliton peaks and the corresponding fiber length are marked by red circles.

Fig. 7
Fig. 7

XPM-induced MI.

Fig. 8
Fig. 8

GVM and phase-matched curves for PCF-SC1. The outermost soliton peaks and the corresponding DW wavelengths are marked by blue circles.

Tables (1)

Tables Icon

Table 1 Parameters of PCFs Used in This Paper a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A i k 2 i k k ! β k k A T k = i γ ( 1 + i ω 0 T ) ( A ( z , T ) + R ( T ) | A ( z , T T ) | 2 ) d T ,
R ( T ) = ( 1 f R ) δ ( T ) + f R τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( T / τ 2 ) sin ( T / τ 1 ) .
E ( z , t ) = [ A + δ A ( z , t ) ] exp { i [ ϕ + δ ϕ ( z , t ) ] } ,
λ min = λ p 1 + λ p 2 c d t , λ max = λ p 1 λ p 2 c d t ,
Ω ( z ) = 8 T R γ P S 15 T 0 2 z .
Ω max = ± ( 2 γ P 0 | β 2 | ) 1 / 2 ,
n 2 β n ( w S ) n ! ( w D W w S ) n = γ ( w S ) p S 2 ,

Metrics