Abstract

In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08m/s is achieved using this new configuration.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
    [CrossRef]
  2. H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
    [CrossRef]
  3. J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, and T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
    [CrossRef]
  4. A. A. Tarasov, H. Chu, and Y. M. Jhon, “Polarization-independent acoustooptically tuned spectral filter with frequency shift compensation,” IEEE Photon. Technol. Lett. 14, 944–946 (2002).
    [CrossRef]
  5. J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fibre Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
    [CrossRef]
  6. M. Willsch, T. Bosselmann, P. Kraemmer, and R. Gerner, “Distributed optical flow sensing using a novel fiber Bragg grating sensor,” Proc. SPIE 5855, 286–289 (2005).
    [CrossRef]
  7. C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A, Phys. 127, 63–68 (2006).
    [CrossRef]
  8. J. A. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A, Phys. 97–8, 68–74 (2002).
    [CrossRef]
  9. J. E. Sundeen and R. C. Buchanan, “Thermal sensor properties of cermet resistor films on silicon substrates,” Sens. Actuators A, Phys. 90, 118–124 (2001).
    [CrossRef]
  10. K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photon. Technol. Lett. 16, 1897–1899 (2004).
    [CrossRef]
  11. L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5, 1327–1331(2005).
    [CrossRef]
  12. G. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Arc-induced long-period gratings,” Fiber Integr. Opt. 24, 245–259 (2005).
    [CrossRef]
  13. J. P. Holman, Heat Transfer, 8th ed. (McGraw-Hill, 1997).

2006 (1)

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A, Phys. 127, 63–68 (2006).
[CrossRef]

2005 (3)

M. Willsch, T. Bosselmann, P. Kraemmer, and R. Gerner, “Distributed optical flow sensing using a novel fiber Bragg grating sensor,” Proc. SPIE 5855, 286–289 (2005).
[CrossRef]

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5, 1327–1331(2005).
[CrossRef]

G. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Arc-induced long-period gratings,” Fiber Integr. Opt. 24, 245–259 (2005).
[CrossRef]

2004 (1)

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photon. Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

2003 (1)

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
[CrossRef]

2002 (2)

A. A. Tarasov, H. Chu, and Y. M. Jhon, “Polarization-independent acoustooptically tuned spectral filter with frequency shift compensation,” IEEE Photon. Technol. Lett. 14, 944–946 (2002).
[CrossRef]

J. A. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A, Phys. 97–8, 68–74 (2002).
[CrossRef]

2001 (2)

J. E. Sundeen and R. C. Buchanan, “Thermal sensor properties of cermet resistor films on silicon substrates,” Sens. Actuators A, Phys. 90, 118–124 (2001).
[CrossRef]

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fibre Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

1999 (1)

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, and T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

1998 (1)

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Bosselmann, T.

M. Willsch, T. Bosselmann, P. Kraemmer, and R. Gerner, “Distributed optical flow sensing using a novel fiber Bragg grating sensor,” Proc. SPIE 5855, 286–289 (2005).
[CrossRef]

Buchanan, R. C.

J. E. Sundeen and R. C. Buchanan, “Thermal sensor properties of cermet resistor films on silicon substrates,” Sens. Actuators A, Phys. 90, 118–124 (2001).
[CrossRef]

Butler, S. A.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
[CrossRef]

Cashdollar, L. J.

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5, 1327–1331(2005).
[CrossRef]

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photon. Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

Chen, K. P.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A, Phys. 127, 63–68 (2006).
[CrossRef]

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5, 1327–1331(2005).
[CrossRef]

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photon. Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

Cho, S. K.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A, Phys. 127, 63–68 (2006).
[CrossRef]

Chu, H.

A. A. Tarasov, H. Chu, and Y. M. Jhon, “Polarization-independent acoustooptically tuned spectral filter with frequency shift compensation,” IEEE Photon. Technol. Lett. 14, 944–946 (2002).
[CrossRef]

Costantini, D. M.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Eggleton, B. J.

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, and T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

Fox, G. R.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Gerner, R.

M. Willsch, T. Bosselmann, P. Kraemmer, and R. Gerner, “Distributed optical flow sensing using a novel fiber Bragg grating sensor,” Proc. SPIE 5855, 286–289 (2005).
[CrossRef]

Goh, C. S.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
[CrossRef]

Holman, J. P.

J. P. Holman, Heat Transfer, 8th ed. (McGraw-Hill, 1997).

Ibsen, M.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
[CrossRef]

Jackson, P. R.

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fibre Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Jewart, C.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A, Phys. 127, 63–68 (2006).
[CrossRef]

Jhon, Y. M.

A. A. Tarasov, H. Chu, and Y. M. Jhon, “Polarization-independent acoustooptically tuned spectral filter with frequency shift compensation,” IEEE Photon. Technol. Lett. 14, 944–946 (2002).
[CrossRef]

Jones, B. E.

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fibre Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Kikuchi, K.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
[CrossRef]

Kraemmer, P.

M. Willsch, T. Bosselmann, P. Kraemmer, and R. Gerner, “Distributed optical flow sensing using a novel fiber Bragg grating sensor,” Proc. SPIE 5855, 286–289 (2005).
[CrossRef]

Ky, N. H.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Lim, J.

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fibre Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Limberger, H. G.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Marques, P. V. S.

G. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Arc-induced long-period gratings,” Fiber Integr. Opt. 24, 245–259 (2005).
[CrossRef]

McMillen, B.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A, Phys. 127, 63–68 (2006).
[CrossRef]

Mokhtar, M. R.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
[CrossRef]

Muller, C. A. P.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Pedrazzani, J. R.

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, and T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

Rego, G.

G. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Arc-induced long-period gratings,” Fiber Integr. Opt. 24, 245–259 (2005).
[CrossRef]

Rogers, J. A.

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, and T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

Salathe, R. P.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

Salgado, H. M.

G. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Arc-induced long-period gratings,” Fiber Integr. Opt. 24, 245–259 (2005).
[CrossRef]

Sansen, W.

J. A. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A, Phys. 97–8, 68–74 (2002).
[CrossRef]

Santos, J. L.

G. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Arc-induced long-period gratings,” Fiber Integr. Opt. 24, 245–259 (2005).
[CrossRef]

Set, S. Y.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
[CrossRef]

Strasser, T. A.

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, and T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

Sundeen, J. E.

J. E. Sundeen and R. C. Buchanan, “Thermal sensor properties of cermet resistor films on silicon substrates,” Sens. Actuators A, Phys. 90, 118–124 (2001).
[CrossRef]

Tarasov, A. A.

A. A. Tarasov, H. Chu, and Y. M. Jhon, “Polarization-independent acoustooptically tuned spectral filter with frequency shift compensation,” IEEE Photon. Technol. Lett. 14, 944–946 (2002).
[CrossRef]

Willsch, M.

M. Willsch, T. Bosselmann, P. Kraemmer, and R. Gerner, “Distributed optical flow sensing using a novel fiber Bragg grating sensor,” Proc. SPIE 5855, 286–289 (2005).
[CrossRef]

Wu, J. A.

J. A. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A, Phys. 97–8, 68–74 (2002).
[CrossRef]

Xu, W.

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photon. Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

Yang, Q. P.

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fibre Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, and T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999).
[CrossRef]

Fiber Integr. Opt. (1)

G. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Arc-induced long-period gratings,” Fiber Integr. Opt. 24, 245–259 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

K. P. Chen, L. J. Cashdollar, and W. Xu, “Controlling fiber Bragg grating spectra with in-fiber diode laser light,” IEEE Photon. Technol. Lett. 16, 1897–1899 (2004).
[CrossRef]

A. A. Tarasov, H. Chu, and Y. M. Jhon, “Polarization-independent acoustooptically tuned spectral filter with frequency shift compensation,” IEEE Photon. Technol. Lett. 14, 944–946 (2002).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15, 557–559 (2003).
[CrossRef]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998).
[CrossRef]

IEEE Sens. J. (1)

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5, 1327–1331(2005).
[CrossRef]

Proc. SPIE (1)

M. Willsch, T. Bosselmann, P. Kraemmer, and R. Gerner, “Distributed optical flow sensing using a novel fiber Bragg grating sensor,” Proc. SPIE 5855, 286–289 (2005).
[CrossRef]

Sens. Actuators A, Phys. (4)

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A, Phys. 127, 63–68 (2006).
[CrossRef]

J. A. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A, Phys. 97–8, 68–74 (2002).
[CrossRef]

J. E. Sundeen and R. C. Buchanan, “Thermal sensor properties of cermet resistor films on silicon substrates,” Sens. Actuators A, Phys. 90, 118–124 (2001).
[CrossRef]

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fibre Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Other (1)

J. P. Holman, Heat Transfer, 8th ed. (McGraw-Hill, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup with the details of the sensing head.

Fig. 2
Fig. 2

Spectra of the pump laser emission and the LPG resonance.

Fig. 3
Fig. 3

Bragg grating spectral response when the heating laser radiation ( 1480 nm ) was turned on and off.

Fig. 4
Fig. 4

(a) Spectral response of the FBG and (b) its resonance peak shift for different driving currents of the pump laser.

Fig. 5
Fig. 5

FBG resonance wavelength shift when the sensing head is subjected to a range of flows speeds for two distinct laser currents (500 and 1000 mA ).

Fig. 6
Fig. 6

Dynamic response of the sensor to a step change in flow speed.

Fig. 7
Fig. 7

LPG transmission spectra for modulation periods of Λ = 385 μm and Λ = 446 μm .

Fig. 8
Fig. 8

Spectra of the pump laser emission and the LPG resonance at 1480 nm for the gratings with modulation periods of 385 and 446 μm .

Fig. 9
Fig. 9

Resonance wavelength shift of the FBG when the pump laser is turned on for LPG period of (a)  Λ = 385 μm and (b)  Λ = 446 μm .

Fig. 10
Fig. 10

Bragg grating response when it was heated by pump laser with 1000 mA for LPG Λ = 385 μm and LPG Λ = 446 μm .

Metrics