Abstract

A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Chigrinov, E. P. Pozhidaev, D. A. Yakovlev, and H. S. Kwok, “Liquid crystal devices for optical communication systems,” in Optoelectronics, Proceedings of the Sixth Chinese Symposium (IEEE, 2003), pp. 204–207, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1278203.
    [CrossRef]
  2. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [CrossRef] [PubMed]
  3. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14, 11292–11298 (2006).
    [CrossRef] [PubMed]
  4. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and Y. G. Fuh, “Achieving high focusing power for a large aperture liquid crystal lens with novel hole and ring electrodes,” Opt. Express 16, 19277–19284 (2008).
    [CrossRef]
  5. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
    [CrossRef] [PubMed]
  6. R. Cudney, L. Ríos, and H. Escamilla, “Electrically controlled Fresnel zone plates made from ring-shaped 180° domains,” Opt. Express 12, 5783–5788 (2004).
    [CrossRef] [PubMed]
  7. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
    [CrossRef] [PubMed]
  8. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
    [CrossRef]
  9. G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
  10. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [CrossRef]
  11. J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,” Opt. Lett. 16, 532–534 (1991).
    [CrossRef] [PubMed]
  12. Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
    [CrossRef] [PubMed]
  13. Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13, 4141–4147 (2005).
    [CrossRef] [PubMed]
  14. H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002).
    [CrossRef]
  15. V. Presnyakov, K. Asatryan, T. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10, 865–870 (2002).
    [PubMed]
  16. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230, 267–271 (2004).
    [CrossRef]
  17. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
    [CrossRef]
  18. N. Kitaura, S. Ogata, and Y. Mori, “Spectrometer employing a micro-Fresnel lens,” Opt. Eng. 34, 584–588 (1995).
    [CrossRef]
  19. H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
    [CrossRef]
  20. E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, “Two methods for increasing the depth of focus of imaging systems,” Proc. SPIE 5227, 8–15 (2004).
  21. M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004).
    [CrossRef]
  22. S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
    [CrossRef]
  23. X. Ren, S. Liu, and X. Zhang, “Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,” Proc. SPIE 5456, 391–398 (2004).
    [CrossRef]
  24. J. T. Early and R. Hyde, “Twenty-meter space telescope based on diffractive Fresnel lens,” Proc. SPIE 5166, 148–156 (2004).
    [CrossRef]
  25. L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
    [CrossRef]
  26. B. E. A. Saleh and M. C. Teich, “Wave optics,” in Fundamentals of Photonics (Wiley, 2007), pp. 38–73.
  27. T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
    [CrossRef]
  28. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
    [CrossRef]
  29. J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. 157, 427–441 (1988).
    [CrossRef]
  30. Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
    [CrossRef]

2009 (1)

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14, 11292–11298 (2006).
[CrossRef] [PubMed]

T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
[CrossRef]

2005 (2)

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13, 4141–4147 (2005).
[CrossRef] [PubMed]

2004 (7)

E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, “Two methods for increasing the depth of focus of imaging systems,” Proc. SPIE 5227, 8–15 (2004).

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004).
[CrossRef]

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

X. Ren, S. Liu, and X. Zhang, “Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,” Proc. SPIE 5456, 391–398 (2004).
[CrossRef]

J. T. Early and R. Hyde, “Twenty-meter space telescope based on diffractive Fresnel lens,” Proc. SPIE 5166, 148–156 (2004).
[CrossRef]

R. Cudney, L. Ríos, and H. Escamilla, “Electrically controlled Fresnel zone plates made from ring-shaped 180° domains,” Opt. Express 12, 5783–5788 (2004).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230, 267–271 (2004).
[CrossRef]

2003 (2)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef] [PubMed]

2002 (2)

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002).
[CrossRef]

V. Presnyakov, K. Asatryan, T. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10, 865–870 (2002).
[PubMed]

2000 (1)

C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

1998 (1)

1996 (2)

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

1995 (1)

N. Kitaura, S. Ogata, and Y. Mori, “Spectrometer employing a micro-Fresnel lens,” Opt. Eng. 34, 584–588 (1995).
[CrossRef]

1991 (1)

1990 (1)

1989 (1)

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).

1988 (1)

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. 157, 427–441 (1988).
[CrossRef]

Adams, W. W.

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Asatryan, K.

Ben-Eliezer, E.

E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, “Two methods for increasing the depth of focus of imaging systems,” Proc. SPIE 5227, 8–15 (2004).

Bowley, C.

C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Bunning, T. J.

T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
[CrossRef]

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Chao, P. C. P.

Chen, Y.-M.

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Chigrinov, V. G.

V. G. Chigrinov, E. P. Pozhidaev, D. A. Yakovlev, and H. S. Kwok, “Liquid crystal devices for optical communication systems,” in Optoelectronics, Proceedings of the Sixth Chinese Symposium (IEEE, 2003), pp. 204–207, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1278203.
[CrossRef]

Chiu, C. W.

Clark, M. G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).

Crawford, G. P.

C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Cudney, R.

Dai, H. T.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Domash, L. H.

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Early, J. T.

J. T. Early and R. Hyde, “Twenty-meter space telescope based on diffractive Fresnel lens,” Proc. SPIE 5166, 148–156 (2004).
[CrossRef]

Escamilla, H.

Fan, Y. H.

Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13, 4141–4147 (2005).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230, 267–271 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef] [PubMed]

Ferstl, M.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

Fox, D. W.

Frisch, A.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

Fuh, Y. G.

Galstian, T.

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230, 267–271 (2004).
[CrossRef]

Gomatam, B.

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Gozewski, C.

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Guralnik, I. R.

Guymon, C. A.

T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
[CrossRef]

Hyde, R.

J. T. Early and R. Hyde, “Twenty-meter space telescope based on diffractive Fresnel lens,” Proc. SPIE 5166, 148–156 (2004).
[CrossRef]

Jahns, J.

Kim, E. S.

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

Kim, S. C.

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

Kitaura, N.

N. Kitaura, S. Ogata, and Y. Mori, “Spectrometer employing a micro-Fresnel lens,” Opt. Eng. 34, 584–588 (1995).
[CrossRef]

Kolodziejczyk, A.

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004).
[CrossRef]

Kwok, H. S.

V. G. Chigrinov, E. P. Pozhidaev, D. A. Yakovlev, and H. S. Kwok, “Liquid crystal devices for optical communication systems,” in Optoelectronics, Proceedings of the Sixth Chinese Symposium (IEEE, 2003), pp. 204–207, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1278203.
[CrossRef]

Lee, S. E.

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

Liechty, W. B.

T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
[CrossRef]

Lin, Y. C.

Liu, J. H.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Liu, S.

X. Ren, S. Liu, and X. Zhang, “Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,” Proc. SPIE 5456, 391–398 (2004).
[CrossRef]

Liu, Y. J.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Loktev, M. Y.

Makowski, M.

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004).
[CrossRef]

Marom, E.

E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, “Two methods for increasing the depth of focus of imaging systems,” Proc. SPIE 5227, 8–15 (2004).

Mikula, G.

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004).
[CrossRef]

Mohajerani, E.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Moheghi, A.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Mori, Y.

N. Kitaura, S. Ogata, and Y. Mori, “Spectrometer employing a micro-Fresnel lens,” Opt. Eng. 34, 584–588 (1995).
[CrossRef]

Nataj, N. H.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Natarajan, L. V.

T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
[CrossRef]

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Naumov, A. F.

Nemati, H.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Ogata, S.

N. Kitaura, S. Ogata, and Y. Mori, “Spectrometer employing a micro-Fresnel lens,” Opt. Eng. 34, 584–588 (1995).
[CrossRef]

Patel, J. S.

Powell, N. J.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).

Pozhidaev, E. P.

V. G. Chigrinov, E. P. Pozhidaev, D. A. Yakovlev, and H. S. Kwok, “Liquid crystal devices for optical communication systems,” in Optoelectronics, Proceedings of the Sixth Chinese Symposium (IEEE, 2003), pp. 204–207, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1278203.
[CrossRef]

Presnyakov, V.

Prokopowicz, C.

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004).
[CrossRef]

Purvis, A.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).

Rad, M. B.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Rastani, K.

Ren, H.

Ren, X.

X. Ren, S. Liu, and X. Zhang, “Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,” Proc. SPIE 5456, 391–398 (2004).
[CrossRef]

Ríos, L.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, “Wave optics,” in Fundamentals of Photonics (Wiley, 2007), pp. 38–73.

Sun, X. W.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Sutherland, R. L.

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Sypek, M.

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, “Wave optics,” in Fundamentals of Photonics (Wiley, 2007), pp. 38–73.

Tondiglia, V. P.

T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
[CrossRef]

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

Tork, A.

Vdovin, G.

Walker, S. J.

West, J. L.

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. 157, 427–441 (1988).
[CrossRef]

White, T. J.

T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
[CrossRef]

Williams, G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).

Wu, B.

Wu, S. T.

Xu, K. S.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Yakovlev, D. A.

V. G. Chigrinov, E. P. Pozhidaev, D. A. Yakovlev, and H. S. Kwok, “Liquid crystal devices for optical communication systems,” in Optoelectronics, Proceedings of the Sixth Chinese Symposium (IEEE, 2003), pp. 204–207, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1278203.
[CrossRef]

Yaroslavsky, L. P.

E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, “Two methods for increasing the depth of focus of imaging systems,” Proc. SPIE 5227, 8–15 (2004).

Zalevsky, Z.

E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, “Two methods for increasing the depth of focus of imaging systems,” Proc. SPIE 5227, 8–15 (2004).

Zhang, X.

X. Ren, S. Liu, and X. Zhang, “Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,” Proc. SPIE 5456, 391–398 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Europhys. Lett. (1)

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

J. Mod. Opt. (1)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. 157, 427–441 (1988).
[CrossRef]

Opt. Commun. (1)

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230, 267–271 (2004).
[CrossRef]

Opt. Eng. (1)

N. Kitaura, S. Ogata, and Y. Mori, “Spectrometer employing a micro-Fresnel lens,” Opt. Eng. 34, 584–588 (1995).
[CrossRef]

Opt. Express (8)

Opt. Lett. (2)

Polymer (1)

T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006).
[CrossRef]

Proc. SPIE (7)

E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, “Two methods for increasing the depth of focus of imaging systems,” Proc. SPIE 5227, 8–15 (2004).

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004).
[CrossRef]

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

X. Ren, S. Liu, and X. Zhang, “Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,” Proc. SPIE 5456, 391–398 (2004).
[CrossRef]

J. T. Early and R. Hyde, “Twenty-meter space telescope based on diffractive Fresnel lens,” Proc. SPIE 5166, 148–156 (2004).
[CrossRef]

L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[CrossRef]

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).

Other (2)

V. G. Chigrinov, E. P. Pozhidaev, D. A. Yakovlev, and H. S. Kwok, “Liquid crystal devices for optical communication systems,” in Optoelectronics, Proceedings of the Sixth Chinese Symposium (IEEE, 2003), pp. 204–207, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1278203.
[CrossRef]

B. E. A. Saleh and M. C. Teich, “Wave optics,” in Fundamentals of Photonics (Wiley, 2007), pp. 38–73.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Michelson interferometer; experimental arrangement for fabricating the holographic Fresnel lens. Inset picture shows created interference pattern captured by a CCD camera. BE, beam expander; BS, beam splitter; L 1 , L 2 and L 3 , lenses; M 1 and M 2 ,mirrors; P, polarizer.

Fig. 2
Fig. 2

Experimental arrangement for studying the light focusing behavior and electro-optical properties of the fabricated lens. L 1 and L 2 , lenses; P, polarizer; PD, photodiode detector.

Fig. 3
Fig. 3

Intensity distribution for (a) theoretical and (b) experimental created Fresnel with dark central ring.

Fig. 4
Fig. 4

Optical polarizing microscope image of the fabricated sample with parallel polarizers and its intensity profile along the horizontal line passing through the center of the rings.

Fig. 5
Fig. 5

3D spot intensity profiles of the focused outgoing beam using a CCD camera at different distance from the sample. The distance from the primary focal point is given for each image. Negative positions correspond to the distances between the sample and the primary focal point, and the positive positions correspond to the positions after the focal point.

Fig. 6
Fig. 6

Images of the focused beam radius in terms of distance from the focal point of the sample using a CCD camera.

Fig. 7
Fig. 7

Optical polarizing microscope images of the sample at various applied ac voltages.

Fig. 8
Fig. 8

Profile of the outgoing focused beam by a CCD camera set at the primary focal point of the sample at various applied ac voltages.

Fig. 9
Fig. 9

Diffraction efficiency at various applied electric fields measured by a photodiode detector set at the primary focal point of the sample in forward direction.

Fig. 10
Fig. 10

Electro-optical response time of the fabricated Fresnel lens. (a) Rise time and (b) decay time.

Metrics