Abstract

We present a new multi-illumination technique for the determination of the phase maps of unknown phase objects and wavefronts based on their diffraction patterns. A spatial light modulator is used to generate a sequence of probe-light fields that illuminate the unknown object producing different diffraction patterns. Compared with similar diffraction-pattern-based approaches, our technique benefits from a motionless multiview operation and a significantly improved deconvolution algorithm convergence speed (tens of iterations versus hundreds). Computer simulations indicate that the extra information brought by the different diffraction patterns prevents convergence of the phase retrieval algorithm to spurious local minima solutions and results in faster convergence. We describe an experimental system built based on our approach using readily available, relatively low-cost components. Successful reconstructions of test targets from experimental diffraction patterns confirm the feasibility of the technique. Major sources of error are identified, solutions to these problems suggested, and potential extensions to multiresolution analysis of unknown wavefronts are proposed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription