Abstract

Temperature measurements of high-explosive and combustion processes are difficult to obtain due to the speed and environment of the events. To overcome these challenges, we have characterized and calibrated a digital high-speed color camera that may be used to measure the temperature of such events. A two-color ratio method is used to calculate a temperature using the color filter array raw image data and a graybody assumption. If the raw image data are not available, temperatures may be calculated from the processed images or movies, depending on proper analysis of the digital color imaging pipeline. We analyze three transformations within the pipeline (demosaicing, white balance, and gamma correction) to determine their effect on the calculated temperature. Using this technique with a Phantom color camera, we have measured the temperature of exploded C-4 charges. The surface temperature of the resulting fireball was found to rapidly increase after detonation, and subsequently decayed to a constant value of approximately 1980K.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Richards, “Applications for high-speed infrared imaging,” in 26th International Congress on High-Speed Photography and Photonics, D.L.Paisley, S.Kleinfelder, D.R.Snyder, and B.J.Thompson (SPIE, 2005), pp. 137–145.
  2. T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
    [CrossRef]
  3. T. Fu, X. Cheng, and Z. Yang, “Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics,” Appl. Opt. 47, 6112–6123 (2008).
    [CrossRef] [PubMed]
  4. T. Fu, X. Cheng, X. Fan, and J. Ding, “The analysis of optimization criteria for multi-band pyrometry,” Metrologia 41, 305–313 (2004).
    [CrossRef]
  5. T. Fu, X. Cheng, M. Zhong, and T. Liu, “The theoretical prediction analysis of the measurement range for multi-band pyrometry,” Meas. Sci. Technol. 17, 2751–2756 (2006).
    [CrossRef]
  6. T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132, 051602 (2010).
    [CrossRef]
  7. H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
    [CrossRef]
  8. S. Simonini, S. Elston, and C. Stone, “Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method,” Proc. Inst. Mech. Engrs. C 215, 1041–1052 (2001).
  9. F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.
  10. J. D. Maun, P. B. Sunderland, and D. L. Urban, “Thin-filament pyrometry with a digital still camera,” Appl. Opt. 46, 483–488(2007).
    [CrossRef] [PubMed]
  11. Vision Research, http://www.visionresearch.com/
  12. D.P.DeWitt and G.D.Nutter, eds., Theory and Practice of Radiation Thermometry (Wiley, 1988).
    [CrossRef]
  13. R.Grum and R.J.Becherer, eds., Optical Radiation Measurements (Academic, 1979).
  14. CIE, http://cie.co.at/.
  15. B. E. Bayer, “Color imaging array,” U.S. Patent 3,971,065(20 July 1976).
  16. S. Yamanaka, “Solid state color cameras,” U.S. Patent 4,054,906 (18 October 1977).
  17. R. Lukac and K. N. Planiotis, “Color filter arrays, design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
    [CrossRef]
  18. T. Kijima, H. Nakamura, J. Compton, and J. Hamilton, “Image sensor with improved light sensitivity,” U.S. Patent 20 070,177,236 (2 August 2007).
  19. R. Ramaath, W. E. Synder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
    [CrossRef]
  20. B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
    [CrossRef]
  21. R.Lukac, ed., Single-Sensor Imaging: Methods and Applications for Digital Cameras (CRC, 2009).
  22. J. E. Adams Jr., “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. SPIE 2416, 144–151 (1995).
    [CrossRef]
  23. J. E. Adams Jr., “Design of practical color filter array interpolation algorithms for digital cameras,” Proc. SPIE 3028, 117–125 (1997).
    [CrossRef]
  24. J.Nakamuri, ed., Image Sensors and Signal Processing for Digital Still Cameras (CRC, 2006).
  25. International Electrotechnical Commission, “Multimedia systems and equipment, colour measurements and management, part 2-1: colour management, default RGB color space: sRGB,” Tech. Rep. 1999 IEC 61966-2-1 (International Electrotechnical Commission, 1999).
  26. M. Planck, “Ueber das gesetz der energieverteilung im normalspectrum,” Annalen der Physik (Wiley, 1901), pp. 553–563.
    [CrossRef]
  27. T. Panagiotou, Y. Levendis, and M. Delichatsios, “Measurements of particle flame temperatures using three-color optical pyrometry,” Combust. Flame 104, 272–287 (1996).
    [CrossRef]
  28. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Digital color cameras-1 response models,” Tech. Rep. HPL-97-53 (Hewlett-Packard Co., 1997).
  29. B.Jahne, ed., Practical Handbook on Image Processing for Scientific and Technical Applications (CRC, 2004).
    [CrossRef]
  30. G. D. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” presented at the Sixth Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, Nov. 1998.
  31. P. M. Hubel, D. Sherman, and J. E. Farrell, “A comparison of methods for sensor spectral sensitivity estimation,” presented at the Information Systems & Technology and Society for Information Display’s 2nd Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, 15–18 Nov. 1994.
  32. A. Cubit, Vision Research, Aberdeen Proving Ground, MD, 21010 (personal communication, 2009.
  33. J. C. Dunlap, E. Bodegom, and R. Widenhorn, “Correction of dark current in consumer cameras,” J. Electron. Imaging 19, 013010 (2010).
    [CrossRef]
  34. S. Goroshin, D. L. Frost, J. Levine, A. Yoshinaka, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” Propell. Explos. Pyrotech. 31, 169–181 (2006).
    [CrossRef]
  35. S. Goroshin, D. L. Frost, J. Levine, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).
  36. P. W. Cooper, Explosive Engineering (Wily-VCH, 1996).
  37. F. Gibson, M. Bower, C. Summers, F. Scott, and C. Mason, “Use of electro-optical methods to determine detonation temperatures in high explosives,” J. Appl. Phys. 29, 628–632(1958).
    [CrossRef]
  38. A. Yoshinaka, F. Zhang, J. Anderson, and L. Legare, “Near-field reflected temperatures in fireballs of heterogeneous explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).
  39. R. G. Siddall and I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Elsevier, 1962), p. 102.
  40. P. J. Pagni and S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Elsevier, 1978) pp. 1017–1028.
  41. S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
    [CrossRef]
  42. Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a d.i. diesel engine by the two-color method,” Tech. Rep. 790491 (Society of Automotive Engineers, 1979).
  43. H. X. Quoc, J.-M. Vignon, and M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a d.i. diesel combustion chamber,” Tech. Rep. 910736 (Society of Automotive Engineers, 1991).
  44. J.C.Russ, ed., The Image Processing Handbook, 4th ed. (CRC, 2002).
  45. R.Lukac and KPlataniotos, eds., Color Image Processing: Methods and Applications (CRC, 2006).
    [CrossRef]
  46. H. J. Trussell, E. Saber, and M. Vrhel, “Color image processing,” IEEE Signal Process. Mag. 22(1), 14–22 (2005).
    [CrossRef]
  47. R. Ramaath, W. E. Synder, Youngjun Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005).
    [CrossRef]

2010

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132, 051602 (2010).
[CrossRef]

J. C. Dunlap, E. Bodegom, and R. Widenhorn, “Correction of dark current in consumer cameras,” J. Electron. Imaging 19, 013010 (2010).
[CrossRef]

2009

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

2008

2007

2006

T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
[CrossRef]

T. Fu, X. Cheng, M. Zhong, and T. Liu, “The theoretical prediction analysis of the measurement range for multi-band pyrometry,” Meas. Sci. Technol. 17, 2751–2756 (2006).
[CrossRef]

S. Goroshin, D. L. Frost, J. Levine, A. Yoshinaka, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” Propell. Explos. Pyrotech. 31, 169–181 (2006).
[CrossRef]

2005

H. J. Trussell, E. Saber, and M. Vrhel, “Color image processing,” IEEE Signal Process. Mag. 22(1), 14–22 (2005).
[CrossRef]

R. Ramaath, W. E. Synder, Youngjun Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005).
[CrossRef]

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
[CrossRef]

R. Lukac and K. N. Planiotis, “Color filter arrays, design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
[CrossRef]

2004

T. Fu, X. Cheng, X. Fan, and J. Ding, “The analysis of optimization criteria for multi-band pyrometry,” Metrologia 41, 305–313 (2004).
[CrossRef]

2002

R. Ramaath, W. E. Synder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

2001

S. Simonini, S. Elston, and C. Stone, “Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method,” Proc. Inst. Mech. Engrs. C 215, 1041–1052 (2001).

1998

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

1997

J. E. Adams Jr., “Design of practical color filter array interpolation algorithms for digital cameras,” Proc. SPIE 3028, 117–125 (1997).
[CrossRef]

1996

T. Panagiotou, Y. Levendis, and M. Delichatsios, “Measurements of particle flame temperatures using three-color optical pyrometry,” Combust. Flame 104, 272–287 (1996).
[CrossRef]

1995

J. E. Adams Jr., “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. SPIE 2416, 144–151 (1995).
[CrossRef]

1958

F. Gibson, M. Bower, C. Summers, F. Scott, and C. Mason, “Use of electro-optical methods to determine detonation temperatures in high explosives,” J. Appl. Phys. 29, 628–632(1958).
[CrossRef]

Adams, J. E.

J. E. Adams Jr., “Design of practical color filter array interpolation algorithms for digital cameras,” Proc. SPIE 3028, 117–125 (1997).
[CrossRef]

J. E. Adams Jr., “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. SPIE 2416, 144–151 (1995).
[CrossRef]

Altunbasak, Y.

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
[CrossRef]

Anderson, J.

A. Yoshinaka, F. Zhang, J. Anderson, and L. Legare, “Near-field reflected temperatures in fireballs of heterogeneous explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

Barbini, M.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

Bard, S.

P. J. Pagni and S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Elsevier, 1978) pp. 1017–1028.

Bardin, F.

F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.

Baxter, L.

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

Bayer, B. E.

B. E. Bayer, “Color imaging array,” U.S. Patent 3,971,065(20 July 1976).

Benecchi, S.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

Bilbro, G. L.

R. Ramaath, W. E. Synder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

Bodegom, E.

J. C. Dunlap, E. Bodegom, and R. Widenhorn, “Correction of dark current in consumer cameras,” J. Electron. Imaging 19, 013010 (2010).
[CrossRef]

Bower, M.

F. Gibson, M. Bower, C. Summers, F. Scott, and C. Mason, “Use of electro-optical methods to determine detonation temperatures in high explosives,” J. Appl. Phys. 29, 628–632(1958).
[CrossRef]

Brainard, D. H.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Digital color cameras-1 response models,” Tech. Rep. HPL-97-53 (Hewlett-Packard Co., 1997).

Brun, M.

H. X. Quoc, J.-M. Vignon, and M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a d.i. diesel combustion chamber,” Tech. Rep. 910736 (Society of Automotive Engineers, 1991).

Cheng, X.

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132, 051602 (2010).
[CrossRef]

T. Fu, X. Cheng, and Z. Yang, “Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics,” Appl. Opt. 47, 6112–6123 (2008).
[CrossRef] [PubMed]

T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
[CrossRef]

T. Fu, X. Cheng, M. Zhong, and T. Liu, “The theoretical prediction analysis of the measurement range for multi-band pyrometry,” Meas. Sci. Technol. 17, 2751–2756 (2006).
[CrossRef]

T. Fu, X. Cheng, X. Fan, and J. Ding, “The analysis of optimization criteria for multi-band pyrometry,” Metrologia 41, 305–313 (2004).
[CrossRef]

Cignoli, F.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

Compton, J.

T. Kijima, H. Nakamura, J. Compton, and J. Hamilton, “Image sensor with improved light sensitivity,” U.S. Patent 20 070,177,236 (2 August 2007).

Cooper, P. W.

P. W. Cooper, Explosive Engineering (Wily-VCH, 1996).

Cubit, A.

A. Cubit, Vision Research, Aberdeen Proving Ground, MD, 21010 (personal communication, 2009.

De Iuliis, S.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

Delichatsios, M.

T. Panagiotou, Y. Levendis, and M. Delichatsios, “Measurements of particle flame temperatures using three-color optical pyrometry,” Combust. Flame 104, 272–287 (1996).
[CrossRef]

Ding, J.

T. Fu, X. Cheng, X. Fan, and J. Ding, “The analysis of optimization criteria for multi-band pyrometry,” Metrologia 41, 305–313 (2004).
[CrossRef]

Drew, M. S.

R. Ramaath, W. E. Synder, Youngjun Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005).
[CrossRef]

Dunlap, J. C.

J. C. Dunlap, E. Bodegom, and R. Widenhorn, “Correction of dark current in consumer cameras,” J. Electron. Imaging 19, 013010 (2010).
[CrossRef]

Elston, S.

S. Simonini, S. Elston, and C. Stone, “Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method,” Proc. Inst. Mech. Engrs. C 215, 1041–1052 (2001).

Fan, X.

T. Fu, X. Cheng, X. Fan, and J. Ding, “The analysis of optimization criteria for multi-band pyrometry,” Metrologia 41, 305–313 (2004).
[CrossRef]

Farrell, J. E.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Digital color cameras-1 response models,” Tech. Rep. HPL-97-53 (Hewlett-Packard Co., 1997).

P. M. Hubel, D. Sherman, and J. E. Farrell, “A comparison of methods for sensor spectral sensitivity estimation,” presented at the Information Systems & Technology and Society for Information Display’s 2nd Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, 15–18 Nov. 1994.

Finlayson, G. D.

G. D. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” presented at the Sixth Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, Nov. 1998.

Frost, D. L.

S. Goroshin, D. L. Frost, J. Levine, A. Yoshinaka, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” Propell. Explos. Pyrotech. 31, 169–181 (2006).
[CrossRef]

S. Goroshin, D. L. Frost, J. Levine, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

Fu, T.

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132, 051602 (2010).
[CrossRef]

T. Fu, X. Cheng, and Z. Yang, “Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics,” Appl. Opt. 47, 6112–6123 (2008).
[CrossRef] [PubMed]

T. Fu, X. Cheng, M. Zhong, and T. Liu, “The theoretical prediction analysis of the measurement range for multi-band pyrometry,” Meas. Sci. Technol. 17, 2751–2756 (2006).
[CrossRef]

T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
[CrossRef]

T. Fu, X. Cheng, X. Fan, and J. Ding, “The analysis of optimization criteria for multi-band pyrometry,” Metrologia 41, 305–313 (2004).
[CrossRef]

Gibson, F.

F. Gibson, M. Bower, C. Summers, F. Scott, and C. Mason, “Use of electro-optical methods to determine detonation temperatures in high explosives,” J. Appl. Phys. 29, 628–632(1958).
[CrossRef]

Glotzbach, J.

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
[CrossRef]

Goroshin, S.

S. Goroshin, D. L. Frost, J. Levine, A. Yoshinaka, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” Propell. Explos. Pyrotech. 31, 169–181 (2006).
[CrossRef]

S. Goroshin, D. L. Frost, J. Levine, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

Gunturk, B. K.

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
[CrossRef]

Hamilton, J.

T. Kijima, H. Nakamura, J. Compton, and J. Hamilton, “Image sensor with improved light sensitivity,” U.S. Patent 20 070,177,236 (2 August 2007).

Hand, D.

F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.

Hordley, S.

G. D. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” presented at the Sixth Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, Nov. 1998.

Hubel, P. M.

G. D. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” presented at the Sixth Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, Nov. 1998.

P. M. Hubel, D. Sherman, and J. E. Farrell, “A comparison of methods for sensor spectral sensitivity estimation,” presented at the Information Systems & Technology and Society for Information Display’s 2nd Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, 15–18 Nov. 1994.

Ip, L.

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

Jones, J.

F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.

Kamimoto, T.

Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a d.i. diesel engine by the two-color method,” Tech. Rep. 790491 (Society of Automotive Engineers, 1979).

Kijima, T.

T. Kijima, H. Nakamura, J. Compton, and J. Hamilton, “Image sensor with improved light sensitivity,” U.S. Patent 20 070,177,236 (2 August 2007).

Legare, L.

A. Yoshinaka, F. Zhang, J. Anderson, and L. Legare, “Near-field reflected temperatures in fireballs of heterogeneous explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

Levendis, Y.

T. Panagiotou, Y. Levendis, and M. Delichatsios, “Measurements of particle flame temperatures using three-color optical pyrometry,” Combust. Flame 104, 272–287 (1996).
[CrossRef]

Levine, J.

S. Goroshin, D. L. Frost, J. Levine, A. Yoshinaka, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” Propell. Explos. Pyrotech. 31, 169–181 (2006).
[CrossRef]

S. Goroshin, D. L. Frost, J. Levine, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

Liu, T.

T. Fu, X. Cheng, M. Zhong, and T. Liu, “The theoretical prediction analysis of the measurement range for multi-band pyrometry,” Meas. Sci. Technol. 17, 2751–2756 (2006).
[CrossRef]

T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
[CrossRef]

Lu, H.

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

Lukac, R.

R. Lukac and K. N. Planiotis, “Color filter arrays, design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
[CrossRef]

Mackrory, A.

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

Mason, C.

F. Gibson, M. Bower, C. Summers, F. Scott, and C. Mason, “Use of electro-optical methods to determine detonation temperatures in high explosives,” J. Appl. Phys. 29, 628–632(1958).
[CrossRef]

Matsui, Y.

Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a d.i. diesel engine by the two-color method,” Tech. Rep. 790491 (Society of Automotive Engineers, 1979).

Matsuoka, S.

Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a d.i. diesel engine by the two-color method,” Tech. Rep. 790491 (Society of Automotive Engineers, 1979).

Maun, J. D.

McBride, R.

F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.

McGrath, I. A.

R. G. Siddall and I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Elsevier, 1962), p. 102.

Mersereau, R. M.

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
[CrossRef]

Moore, A.

F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.

Morgan, S.

F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.

Nakamura, H.

T. Kijima, H. Nakamura, J. Compton, and J. Hamilton, “Image sensor with improved light sensitivity,” U.S. Patent 20 070,177,236 (2 August 2007).

Pagni, P. J.

P. J. Pagni and S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Elsevier, 1978) pp. 1017–1028.

Panagiotou, T.

T. Panagiotou, Y. Levendis, and M. Delichatsios, “Measurements of particle flame temperatures using three-color optical pyrometry,” Combust. Flame 104, 272–287 (1996).
[CrossRef]

Planck, M.

M. Planck, “Ueber das gesetz der energieverteilung im normalspectrum,” Annalen der Physik (Wiley, 1901), pp. 553–563.
[CrossRef]

Planiotis, K. N.

R. Lukac and K. N. Planiotis, “Color filter arrays, design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
[CrossRef]

Quoc, H. X.

H. X. Quoc, J.-M. Vignon, and M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a d.i. diesel combustion chamber,” Tech. Rep. 910736 (Society of Automotive Engineers, 1991).

Ramaath, R.

R. Ramaath, W. E. Synder, Youngjun Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005).
[CrossRef]

R. Ramaath, W. E. Synder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

Richards, A. A.

A. A. Richards, “Applications for high-speed infrared imaging,” in 26th International Congress on High-Speed Photography and Photonics, D.L.Paisley, S.Kleinfelder, D.R.Snyder, and B.J.Thompson (SPIE, 2005), pp. 137–145.

Saber, E.

H. J. Trussell, E. Saber, and M. Vrhel, “Color image processing,” IEEE Signal Process. Mag. 22(1), 14–22 (2005).
[CrossRef]

Sander, W. A.

R. Ramaath, W. E. Synder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

Schafer, R. W.

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
[CrossRef]

Scott, F.

F. Gibson, M. Bower, C. Summers, F. Scott, and C. Mason, “Use of electro-optical methods to determine detonation temperatures in high explosives,” J. Appl. Phys. 29, 628–632(1958).
[CrossRef]

Scott, J.

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

Sherman, D.

P. M. Hubel, D. Sherman, and J. E. Farrell, “A comparison of methods for sensor spectral sensitivity estimation,” presented at the Information Systems & Technology and Society for Information Display’s 2nd Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, 15–18 Nov. 1994.

Shi, C.

T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
[CrossRef]

Siddall, R. G.

R. G. Siddall and I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Elsevier, 1962), p. 102.

Simonini, S.

S. Simonini, S. Elston, and C. Stone, “Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method,” Proc. Inst. Mech. Engrs. C 215, 1041–1052 (2001).

Stone, C.

S. Simonini, S. Elston, and C. Stone, “Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method,” Proc. Inst. Mech. Engrs. C 215, 1041–1052 (2001).

Summers, C.

F. Gibson, M. Bower, C. Summers, F. Scott, and C. Mason, “Use of electro-optical methods to determine detonation temperatures in high explosives,” J. Appl. Phys. 29, 628–632(1958).
[CrossRef]

Sunderland, P. B.

Synder, W. E.

R. Ramaath, W. E. Synder, Youngjun Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005).
[CrossRef]

R. Ramaath, W. E. Synder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

Tietz, J. D.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Digital color cameras-1 response models,” Tech. Rep. HPL-97-53 (Hewlett-Packard Co., 1997).

Tree, D.

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

Trussell, H. J.

H. J. Trussell, E. Saber, and M. Vrhel, “Color image processing,” IEEE Signal Process. Mag. 22(1), 14–22 (2005).
[CrossRef]

Urban, D. L.

Vignon, J.-M.

H. X. Quoc, J.-M. Vignon, and M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a d.i. diesel combustion chamber,” Tech. Rep. 910736 (Society of Automotive Engineers, 1991).

Vora, P. L.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Digital color cameras-1 response models,” Tech. Rep. HPL-97-53 (Hewlett-Packard Co., 1997).

Vrhel, M.

H. J. Trussell, E. Saber, and M. Vrhel, “Color image processing,” IEEE Signal Process. Mag. 22(1), 14–22 (2005).
[CrossRef]

Wang, Z.

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132, 051602 (2010).
[CrossRef]

Werrett, L.

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

Widenhorn, R.

J. C. Dunlap, E. Bodegom, and R. Widenhorn, “Correction of dark current in consumer cameras,” J. Electron. Imaging 19, 013010 (2010).
[CrossRef]

Williams, S.

F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.

Yamanaka, S.

S. Yamanaka, “Solid state color cameras,” U.S. Patent 4,054,906 (18 October 1977).

Yang, Z.

Yoo, Youngjun

R. Ramaath, W. E. Synder, Youngjun Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005).
[CrossRef]

Yoshinaka, A.

S. Goroshin, D. L. Frost, J. Levine, A. Yoshinaka, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” Propell. Explos. Pyrotech. 31, 169–181 (2006).
[CrossRef]

A. Yoshinaka, F. Zhang, J. Anderson, and L. Legare, “Near-field reflected temperatures in fireballs of heterogeneous explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

Zhang, F.

S. Goroshin, D. L. Frost, J. Levine, A. Yoshinaka, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” Propell. Explos. Pyrotech. 31, 169–181 (2006).
[CrossRef]

S. Goroshin, D. L. Frost, J. Levine, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

A. Yoshinaka, F. Zhang, J. Anderson, and L. Legare, “Near-field reflected temperatures in fireballs of heterogeneous explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

Zheng, X.

T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
[CrossRef]

Zhong, M.

T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
[CrossRef]

T. Fu, X. Cheng, M. Zhong, and T. Liu, “The theoretical prediction analysis of the measurement range for multi-band pyrometry,” Meas. Sci. Technol. 17, 2751–2756 (2006).
[CrossRef]

Zizak, G.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

AIChE J.

H. Lu, L. Ip, A. Mackrory, L. Werrett, J. Scott, D. Tree, and L. Baxter, “Particle surface temperature measurements with multicolor band pyrometry,” AIChE J. 55, 243–255 (2009).
[CrossRef]

Appl. Opt.

Combust. Flame

T. Panagiotou, Y. Levendis, and M. Delichatsios, “Measurements of particle flame temperatures using three-color optical pyrometry,” Combust. Flame 104, 272–287 (1996).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

IEEE Signal Process. Mag.

H. J. Trussell, E. Saber, and M. Vrhel, “Color image processing,” IEEE Signal Process. Mag. 22(1), 14–22 (2005).
[CrossRef]

R. Ramaath, W. E. Synder, Youngjun Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005).
[CrossRef]

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
[CrossRef]

IEEE Trans. Consum. Electron.

R. Lukac and K. N. Planiotis, “Color filter arrays, design and performance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).
[CrossRef]

J. Appl. Phys.

F. Gibson, M. Bower, C. Summers, F. Scott, and C. Mason, “Use of electro-optical methods to determine detonation temperatures in high explosives,” J. Appl. Phys. 29, 628–632(1958).
[CrossRef]

J. Electron. Imaging

J. C. Dunlap, E. Bodegom, and R. Widenhorn, “Correction of dark current in consumer cameras,” J. Electron. Imaging 19, 013010 (2010).
[CrossRef]

R. Ramaath, W. E. Synder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

J. Heat Transfer

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132, 051602 (2010).
[CrossRef]

Meas. Sci. Technol.

T. Fu, X. Cheng, M. Zhong, and T. Liu, “The theoretical prediction analysis of the measurement range for multi-band pyrometry,” Meas. Sci. Technol. 17, 2751–2756 (2006).
[CrossRef]

T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu, and X. Zheng, “The set-up of a vision pyrometer,” Meas. Sci. Technol. 17, 659–665 (2006).
[CrossRef]

Metrologia

T. Fu, X. Cheng, X. Fan, and J. Ding, “The analysis of optimization criteria for multi-band pyrometry,” Metrologia 41, 305–313 (2004).
[CrossRef]

Proc. Inst. Mech. Engrs. C

S. Simonini, S. Elston, and C. Stone, “Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method,” Proc. Inst. Mech. Engrs. C 215, 1041–1052 (2001).

Proc. SPIE

J. E. Adams Jr., “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. SPIE 2416, 144–151 (1995).
[CrossRef]

J. E. Adams Jr., “Design of practical color filter array interpolation algorithms for digital cameras,” Proc. SPIE 3028, 117–125 (1997).
[CrossRef]

Propell. Explos. Pyrotech.

S. Goroshin, D. L. Frost, J. Levine, A. Yoshinaka, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” Propell. Explos. Pyrotech. 31, 169–181 (2006).
[CrossRef]

Other

S. Goroshin, D. L. Frost, J. Levine, and F. Zhang, “Optical pyrometry of fireballs of metalized explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

P. W. Cooper, Explosive Engineering (Wily-VCH, 1996).

A. Yoshinaka, F. Zhang, J. Anderson, and L. Legare, “Near-field reflected temperatures in fireballs of heterogeneous explosives,” presented at the 18th International Symposium on the Military Aspects of Blast and Shock (MABS 18), Bad Reichenhall, Germany, 27 Sept.–1 Oct. 2004).

R. G. Siddall and I. A. McGrath, “The emissivity of luminous flames,” in Proceedings of the 9th Symposium (International) on Combustion (Elsevier, 1962), p. 102.

P. J. Pagni and S. Bard, “Particulate volume fractions in diffusion flames,” in Proceedings of the 17th Symposium (International) on Combustion (Elsevier, 1978) pp. 1017–1028.

J.Nakamuri, ed., Image Sensors and Signal Processing for Digital Still Cameras (CRC, 2006).

International Electrotechnical Commission, “Multimedia systems and equipment, colour measurements and management, part 2-1: colour management, default RGB color space: sRGB,” Tech. Rep. 1999 IEC 61966-2-1 (International Electrotechnical Commission, 1999).

M. Planck, “Ueber das gesetz der energieverteilung im normalspectrum,” Annalen der Physik (Wiley, 1901), pp. 553–563.
[CrossRef]

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Digital color cameras-1 response models,” Tech. Rep. HPL-97-53 (Hewlett-Packard Co., 1997).

B.Jahne, ed., Practical Handbook on Image Processing for Scientific and Technical Applications (CRC, 2004).
[CrossRef]

G. D. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” presented at the Sixth Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, Nov. 1998.

P. M. Hubel, D. Sherman, and J. E. Farrell, “A comparison of methods for sensor spectral sensitivity estimation,” presented at the Information Systems & Technology and Society for Information Display’s 2nd Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, 15–18 Nov. 1994.

A. Cubit, Vision Research, Aberdeen Proving Ground, MD, 21010 (personal communication, 2009.

F. Bardin, R. McBride, A. Moore, S. Morgan, S. Williams, J. Jones, and D. Hand, “Real time temperature measurement for process monitoring of laser conduction welding,” presented at the Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, San Francisco, California, 4–7 Oct. 2004.

A. A. Richards, “Applications for high-speed infrared imaging,” in 26th International Congress on High-Speed Photography and Photonics, D.L.Paisley, S.Kleinfelder, D.R.Snyder, and B.J.Thompson (SPIE, 2005), pp. 137–145.

T. Kijima, H. Nakamura, J. Compton, and J. Hamilton, “Image sensor with improved light sensitivity,” U.S. Patent 20 070,177,236 (2 August 2007).

R.Lukac, ed., Single-Sensor Imaging: Methods and Applications for Digital Cameras (CRC, 2009).

Vision Research, http://www.visionresearch.com/

D.P.DeWitt and G.D.Nutter, eds., Theory and Practice of Radiation Thermometry (Wiley, 1988).
[CrossRef]

R.Grum and R.J.Becherer, eds., Optical Radiation Measurements (Academic, 1979).

CIE, http://cie.co.at/.

B. E. Bayer, “Color imaging array,” U.S. Patent 3,971,065(20 July 1976).

S. Yamanaka, “Solid state color cameras,” U.S. Patent 4,054,906 (18 October 1977).

Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a d.i. diesel engine by the two-color method,” Tech. Rep. 790491 (Society of Automotive Engineers, 1979).

H. X. Quoc, J.-M. Vignon, and M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a d.i. diesel combustion chamber,” Tech. Rep. 910736 (Society of Automotive Engineers, 1991).

J.C.Russ, ed., The Image Processing Handbook, 4th ed. (CRC, 2002).

R.Lukac and KPlataniotos, eds., Color Image Processing: Methods and Applications (CRC, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Bayer CFA [15].

Fig. 2
Fig. 2

Color imaging processing pipeline. A generic outline of steps that must be taken to transform light collected by a lens to reproduce a full color image suitable for viewing [24, 29, 44, 45, 46, 47].

Fig. 3
Fig. 3

Bayer CFA pattern with a ( 3 × 3 ) kernel used to calculate the mean values of the RGB channels at pixel ( 3 , 3 ) .

Fig. 4
Fig. 4

White balance is performed to correct for the spectral distribution of the light source. A white object under a [ T c = 3000 K ] light will appear red, [ T c = 5000 K ] will appear neutral, and [ T c = 6500 K ] will appear blue. The intensity has been normalized at 575 nm .

Fig. 5
Fig. 5

Power law gamma correction relating the voltage from the sensor ( V in ) and the voltage out or pixel value ( V out ).

Fig. 6
Fig. 6

Spectral transmittance of the filters that compose the CFA. The data is in excellent agreement with the manufacturer’s data.

Fig. 7
Fig. 7

Analytical calibration curve, Eq. (5) (blue curve), and measured data from a blackbody source, red diamonds.

Fig. 8
Fig. 8

Ratio of the green-to-red channel in the temperature range expected for detonation products.

Fig. 9
Fig. 9

Surface temperature maps of exploded C-4 charges. The time between frames is 77 μs with a 2 μs exposure. The surface temperature is relatively homogeneous with a standard deviation of 75 K . The temperature is not calculated in the white regions because the light level was approximately the background value. The vertical and horizontal field of view is 0.955 m and 2.14 m , respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G 33 = 1 5 ( G 22 + G 24 + G 33 + G 42 + G 44 ) , R 33 = 1 2 ( R 32 + R 34 ) , B 33 = 1 2 ( B 23 + B 43 ) .
( R b G b B b ) = ( 255 / R w 0 0 0 255 / G w 0 0 0 255 / B w ) ( R u G u B u ) ,
pixel value = V in ( 1 / γ ) .
V out = pixel value γ .
L ( λ , T ) = C 1 λ 5 ϵ ( λ , T ) e C 2 / T λ 1 ,
D = Ψ i Δ A d Δ ω d Δ t τ ( λ ) S ( λ ) χ i ( λ ) d λ ,
Green Red = Ψ g L ( λ , T ) χ g ( λ ) d λ Ψ r L ( λ , T ) χ r ( λ ) d λ .
Q i ( λ ) = χ i ( λ ) * P ( λ ) ,

Metrics