Abstract

An uncooled mid-wave infrared (MWIR) detector is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21μm. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam, such as a He–Ne laser. This capability of measuring the detector response remotely makes it a wireless detector. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the detector is suitable for applications at the 4.21μm wavelength.

© 2011 Optical Society of America

Full Article  |  PDF Article

Corrections

Geunsik Lim, Tariq Manzur, and Aravinda Kar, "Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector: errata," Appl. Opt. 52, 717-717 (2013)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-52-4-717

References

  • View by:
  • |
  • |
  • |

  1. D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000).
    [CrossRef]
  2. M. Reine, “Review of HgCdTe photodiodes for IR detection,” Proc. SPIE 4028, 320–330 (2000).
    [CrossRef]
  3. M. Schlessinger, Infrared Technology Fundamentals (Marcel Dekker, 1995), pp. 77–92.
  4. J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, and R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, 1963), pp. 43–73.
  5. J. L. Miller, Principles of Infrared Technology (Van Nostrand Reinhold, 1994), pp. 106–176.
  6. A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
    [CrossRef]
  7. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).
  8. A. Rogalski, Infrared Photon Detectors (SPIE, 1995), pp. 1–11.
  9. J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46, 115–131(2004).
    [CrossRef]
  10. S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
    [CrossRef]
  11. P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64, 1339–1388 (2001).
    [CrossRef]
  12. M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
    [CrossRef]
  13. F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays—a review,” Proc. SPIE 6836, 68360D (2007).
    [CrossRef]
  14. F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
    [CrossRef]
  15. G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
    [CrossRef]
  16. E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009).
    [CrossRef]
  17. F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Meas. Sci. Technol. 19, 102001 (2008).
    [CrossRef]
  18. A. A. Lebedev, “Silicon carbide: materials, processing, and devices,” in Deep-Level Defects in SiC Materials and Devices, Z.C.Feng and J. H. Zhao, eds., Vol. 20 of Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121–163.
  19. A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107–130 (1999).
    [CrossRef]
  20. S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 1857–1867 (2008).
    [CrossRef]
  21. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, 1994), pp. 60–131.
  22. F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer (Wiley, 1985), pp. 611–613.
  23. E. Hecht, Optics (Pearson Education, 2002), pp. 259–279.
  24. J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004), pp. 7–30.
    [CrossRef]
  25. M. Rubin, “Solar optical properties of windows,” Energy Res. 6, 123–133 (1982).
    [CrossRef]
  26. Z. Tian, N. R. Quick, and A. Kar, “Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide,” Acta Mater. 54, 4273–4283 (2006).
    [CrossRef]
  27. C. A. Bennett, Principles of Physical Optics (Wiley, 2008), p. 87.
  28. E. L. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley, 1996), p. 152–190.
  29. E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984), p. 47.
  30. J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975), pp. 166–184.
  31. Y. Li, D. Pan, C. Yang, and Y. Luo, “NETD test of high-sensitivity infrared camera,” Proc. SPIE 6723, 67233Q (2007).
    [CrossRef]
  32. W. H. Beyer, Handbook of Mathematical Sciences (CRC Press, Florida 1975), p. 727.
  33. P. J. Picone, “Advanced infrared photodetectors (materials review),” Surveillance Research Laboratory Research Report, December 1993.
  34. M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2006), pp. 6–32.
  35. S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
    [CrossRef]
  36. S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
    [CrossRef]
  37. F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009).
    [CrossRef]
  38. P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995).
    [CrossRef]
  39. J. S. Sullivan and J. R. Stanly, “6H-SiC photoconductive switches triggered at below bandgap wavelengths,” IEEE Trans. Dielectr. Electr. Insul. 14, 980–985 (2007).
    [CrossRef]
  40. X. Bai, H.-D. Liu, D. C. McIntosh, and J. C. Campbell, “High-performance SiC avalanche photodiode for single ultraviolet photon detection,” Proc. SPIE 7055, 70550Q (2008).
    [CrossRef]
  41. X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007).
    [CrossRef]
  42. F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000).
    [CrossRef]
  43. T. J. Phillips, “High performance thermal imaging technology,” III-Vs Rev. 15, 32–34 (2002).
    [CrossRef]
  44. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–120 (2003).
    [CrossRef]

2009 (2)

E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009).
[CrossRef]

F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009).
[CrossRef]

2008 (2)

F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Meas. Sci. Technol. 19, 102001 (2008).
[CrossRef]

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 1857–1867 (2008).
[CrossRef]

2007 (5)

Y. Li, D. Pan, C. Yang, and Y. Luo, “NETD test of high-sensitivity infrared camera,” Proc. SPIE 6723, 67233Q (2007).
[CrossRef]

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays—a review,” Proc. SPIE 6836, 68360D (2007).
[CrossRef]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

J. S. Sullivan and J. R. Stanly, “6H-SiC photoconductive switches triggered at below bandgap wavelengths,” IEEE Trans. Dielectr. Electr. Insul. 14, 980–985 (2007).
[CrossRef]

X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007).
[CrossRef]

2006 (1)

Z. Tian, N. R. Quick, and A. Kar, “Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide,” Acta Mater. 54, 4273–4283 (2006).
[CrossRef]

2005 (1)

A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
[CrossRef]

2004 (1)

J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46, 115–131(2004).
[CrossRef]

2003 (2)

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–120 (2003).
[CrossRef]

2002 (3)

T. J. Phillips, “High performance thermal imaging technology,” III-Vs Rev. 15, 32–34 (2002).
[CrossRef]

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

2001 (2)

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64, 1339–1388 (2001).
[CrossRef]

2000 (3)

D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000).
[CrossRef]

M. Reine, “Review of HgCdTe photodiodes for IR detection,” Proc. SPIE 4028, 320–330 (2000).
[CrossRef]

F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000).
[CrossRef]

1999 (2)

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107–130 (1999).
[CrossRef]

1997 (1)

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

1995 (1)

P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995).
[CrossRef]

1982 (1)

M. Rubin, “Solar optical properties of windows,” Energy Res. 6, 123–133 (1982).
[CrossRef]

Bai, X.

X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007).
[CrossRef]

X. Bai, H.-D. Liu, D. C. McIntosh, and J. C. Campbell, “High-performance SiC avalanche photodiode for single ultraviolet photon detection,” Proc. SPIE 7055, 70550Q (2008).
[CrossRef]

Ballato, J.

M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2006), pp. 6–32.

Bennett, C. A.

C. A. Bennett, Principles of Physical Optics (Wiley, 2008), p. 87.

Bertuccio, G.

F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Meas. Sci. Technol. 19, 102001 (2008).
[CrossRef]

Bet, S.

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 1857–1867 (2008).
[CrossRef]

Beyer, W. H.

W. H. Beyer, Handbook of Mathematical Sciences (CRC Press, Florida 1975), p. 727.

Bolotnikov, A.

F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009).
[CrossRef]

Boreman, G.

E. L. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley, 1996), p. 152–190.

Campbell, J. C.

X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007).
[CrossRef]

X. Bai, H.-D. Liu, D. C. McIntosh, and J. C. Campbell, “High-performance SiC avalanche photodiode for single ultraviolet photon detection,” Proc. SPIE 7055, 70550Q (2008).
[CrossRef]

Cavallini, A.

F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Meas. Sci. Technol. 19, 102001 (2008).
[CrossRef]

Chen, C. Q.

F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000).
[CrossRef]

Chen, D.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

Cho, P. S.

P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995).
[CrossRef]

Crowe, D. G.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984), p. 47.

Dereniak, E. L.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984), p. 47.

E. L. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley, 1996), p. 152–190.

DeWitt, D. P.

F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer (Wiley, 1985), pp. 611–613.

Dogan, S.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Dong, F.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

Duan, Z.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

Ganguly, B.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Goldhar, J.

P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995).
[CrossRef]

Greivenkamp, J. E.

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004), pp. 7–30.
[CrossRef]

Grube, R. H.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, and R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, 1963), pp. 43–73.

Guo, X.

X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007).
[CrossRef]

Guo, Z.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

Gupta, M. C.

M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2006), pp. 6–32.

Hallen, A.

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

Harris, G. L.

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

Hashimoto, K.

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Pearson Education, 2002), pp. 259–279.

Helbig, R.

F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000).
[CrossRef]

Howard, J.

D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000).
[CrossRef]

Howell, J.

R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, 1994), pp. 60–131.

Huang, D.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Incropera, F. P.

F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer (Wiley, 1985), pp. 611–613.

Islam, M. M.

F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009).
[CrossRef]

Jakobsen, H.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays—a review,” Proc. SPIE 6836, 68360D (2007).
[CrossRef]

Jaksic, M.

E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009).
[CrossRef]

Jamieson, J. A.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, and R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, 1963), pp. 43–73.

Ju, B. K.

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Kalinina, E. V.

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

Kar, A.

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 1857–1867 (2008).
[CrossRef]

Z. Tian, N. R. Quick, and A. Kar, “Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide,” Acta Mater. 54, 4273–4283 (2006).
[CrossRef]

Kholujanov, G. F.

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

Kim, C. J.

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Kim, T. Y.

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Konstantinov, A. O.

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

Kossov, V. G.

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

Kruer, M.

D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000).
[CrossRef]

Kubo, R.

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

Lebedev, A. A.

A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107–130 (1999).
[CrossRef]

A. A. Lebedev, “Silicon carbide: materials, processing, and devices,” in Deep-Level Defects in SiC Materials and Devices, Z.C.Feng and J. H. Zhao, eds., Vol. 20 of Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121–163.

Lee, C. H.

P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995).
[CrossRef]

Lee, S. J.

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Lee, Y. H.

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Li, Y.

Y. Li, D. Pan, C. Yang, and Y. Luo, “NETD test of high-sensitivity infrared camera,” Proc. SPIE 6723, 67233Q (2007).
[CrossRef]

Liu, H.-D.

X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007).
[CrossRef]

X. Bai, H.-D. Liu, D. C. McIntosh, and J. C. Campbell, “High-performance SiC avalanche photodiode for single ultraviolet photon detection,” Proc. SPIE 7055, 70550Q (2008).
[CrossRef]

Lloyd, J. M.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975), pp. 166–184.

Luo, Y.

Y. Li, D. Pan, C. Yang, and Y. Luo, “NETD test of high-sensitivity infrared camera,” Proc. SPIE 6723, 67233Q (2007).
[CrossRef]

McFee, R. H.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, and R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, 1963), pp. 43–73.

McIntosh, D. C.

X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007).
[CrossRef]

X. Bai, H.-D. Liu, D. C. McIntosh, and J. C. Campbell, “High-performance SiC avalanche photodiode for single ultraviolet photon detection,” Proc. SPIE 7055, 70550Q (2008).
[CrossRef]

Miller, J. L.

J. L. Miller, Principles of Infrared Technology (Van Nostrand Reinhold, 1994), pp. 106–176.

Morkoc, H.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Mukaigawa, T.

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

Muralt, P.

P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64, 1339–1388 (2001).
[CrossRef]

Muzykov, P.

F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009).
[CrossRef]

Myers, R. E.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Nava, F.

F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Meas. Sci. Technol. 19, 102001 (2008).
[CrossRef]

Neudeck, P.

P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995).
[CrossRef]

Niklaus, F.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays—a review,” Proc. SPIE 6836, 68360D (2007).
[CrossRef]

Noda, M.

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

Norton, P.

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).

Oh, M. H.

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Oh, Y. J.

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Okuyama, M.

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

Olivero, P.

E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009).
[CrossRef]

Pan, D.

Y. Li, D. Pan, C. Yang, and Y. Luo, “NETD test of high-sensitivity infrared camera,” Proc. SPIE 6723, 67233Q (2007).
[CrossRef]

Pan, L.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

Parish, J.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Pastuovic, Z.

E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009).
[CrossRef]

Phillips, T. J.

T. J. Phillips, “High performance thermal imaging technology,” III-Vs Rev. 15, 32–34 (2002).
[CrossRef]

Picone, P. J.

P. J. Picone, “Advanced infrared photodetectors (materials review),” Surveillance Research Laboratory Research Report, December 1993.

Piotrowski, J.

J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46, 115–131(2004).
[CrossRef]

Plass, G. N.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, and R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, 1963), pp. 43–73.

Qian, F.

F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000).
[CrossRef]

Quick, N. R.

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 1857–1867 (2008).
[CrossRef]

Z. Tian, N. R. Quick, and A. Kar, “Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide,” Acta Mater. 54, 4273–4283 (2006).
[CrossRef]

Reine, M.

M. Reine, “Review of HgCdTe photodiodes for IR detection,” Proc. SPIE 4028, 320–330 (2000).
[CrossRef]

Richards, R. G.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, and R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, 1963), pp. 43–73.

Roberts, C. B.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Rogalski, A.

A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
[CrossRef]

J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46, 115–131(2004).
[CrossRef]

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–120 (2003).
[CrossRef]

A. Rogalski, Infrared Photon Detectors (SPIE, 1995), pp. 1–11.

Rubin, M.

M. Rubin, “Solar optical properties of windows,” Energy Res. 6, 123–133 (1982).
[CrossRef]

Ryssel, H.

F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000).
[CrossRef]

Saddow, S. E.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995).
[CrossRef]

Schlessinger, M.

M. Schlessinger, Infrared Technology Fundamentals (Marcel Dekker, 1995), pp. 77–92.

Schnupp, R.

F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000).
[CrossRef]

Schuler, J.

D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000).
[CrossRef]

Scribner, D.

D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000).
[CrossRef]

Sheng, S.

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

Siegel, R.

R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, 1994), pp. 60–131.

Skukan, N.

E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009).
[CrossRef]

Smith, M.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Spencer, M. G.

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

Stanly, J. R.

J. S. Sullivan and J. R. Stanly, “6H-SiC photoconductive switches triggered at below bandgap wavelengths,” IEEE Trans. Dielectr. Electr. Insul. 14, 980–985 (2007).
[CrossRef]

Sudarshan, T. S.

F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009).
[CrossRef]

Suh, S. H.

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Sullivan, J. S.

J. S. Sullivan and J. R. Stanly, “6H-SiC photoconductive switches triggered at below bandgap wavelengths,” IEEE Trans. Dielectr. Electr. Insul. 14, 980–985 (2007).
[CrossRef]

Tanaka, H.

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

Tang, X.

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

Taylor, C.

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

Teke, A.

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Tian, Z.

Z. Tian, N. R. Quick, and A. Kar, “Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide,” Acta Mater. 54, 4273–4283 (2006).
[CrossRef]

Vieider, C.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays—a review,” Proc. SPIE 6836, 68360D (2007).
[CrossRef]

Violina, G. N.

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

Vittone, E.

E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009).
[CrossRef]

F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Meas. Sci. Technol. 19, 102001 (2008).
[CrossRef]

Wang, W.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

Warren, P.

D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000).
[CrossRef]

Wongchotigul, K.

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

Wu, X.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

Xu, H.

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

Yafaev, R. R.

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

Yang, C.

Y. Li, D. Pan, C. Yang, and Y. Luo, “NETD test of high-sensitivity infrared camera,” Proc. SPIE 6723, 67233Q (2007).
[CrossRef]

Zhang, Q.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

Zhao, F.

F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009).
[CrossRef]

Zhao, J. H.

A. A. Lebedev, “Silicon carbide: materials, processing, and devices,” in Deep-Level Defects in SiC Materials and Devices, Z.C.Feng and J. H. Zhao, eds., Vol. 20 of Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121–163.

Zhou, P.

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

Acta Mater. (2)

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 1857–1867 (2008).
[CrossRef]

Z. Tian, N. R. Quick, and A. Kar, “Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide,” Acta Mater. 54, 4273–4283 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003).
[CrossRef]

Energy Res. (1)

M. Rubin, “Solar optical properties of windows,” Energy Res. 6, 123–133 (1982).
[CrossRef]

IEEE Electron Device Lett. (1)

F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007).
[CrossRef]

IEEE Trans. Dielectr. Electr. Insul. (1)

J. S. Sullivan and J. R. Stanly, “6H-SiC photoconductive switches triggered at below bandgap wavelengths,” IEEE Trans. Dielectr. Electr. Insul. 14, 980–985 (2007).
[CrossRef]

III-Vs Rev. (1)

T. J. Phillips, “High performance thermal imaging technology,” III-Vs Rev. 15, 32–34 (2002).
[CrossRef]

Infrared Phys. Technol. (1)

J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46, 115–131(2004).
[CrossRef]

J. Appl. Phys. (1)

P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995).
[CrossRef]

Mater. Sci. Eng. B (1)

S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Meas. Sci. Technol. 19, 102001 (2008).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009).
[CrossRef]

Opto-Electron. Rev. (1)

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).

Proc. SPIE (4)

D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000).
[CrossRef]

M. Reine, “Review of HgCdTe photodiodes for IR detection,” Proc. SPIE 4028, 320–330 (2000).
[CrossRef]

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays—a review,” Proc. SPIE 6836, 68360D (2007).
[CrossRef]

Y. Li, D. Pan, C. Yang, and Y. Luo, “NETD test of high-sensitivity infrared camera,” Proc. SPIE 6723, 67233Q (2007).
[CrossRef]

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–120 (2003).
[CrossRef]

Rep. Prog. Phys. (2)

P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64, 1339–1388 (2001).
[CrossRef]

A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
[CrossRef]

Semiconductors (2)

G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002).
[CrossRef]

A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107–130 (1999).
[CrossRef]

Sens. Actuators (1)

F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000).
[CrossRef]

Sens. Actuators A (3)

M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999).
[CrossRef]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007).
[CrossRef]

S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001).
[CrossRef]

Other (17)

A. Rogalski, Infrared Photon Detectors (SPIE, 1995), pp. 1–11.

M. Schlessinger, Infrared Technology Fundamentals (Marcel Dekker, 1995), pp. 77–92.

J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, and R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, 1963), pp. 43–73.

J. L. Miller, Principles of Infrared Technology (Van Nostrand Reinhold, 1994), pp. 106–176.

A. A. Lebedev, “Silicon carbide: materials, processing, and devices,” in Deep-Level Defects in SiC Materials and Devices, Z.C.Feng and J. H. Zhao, eds., Vol. 20 of Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121–163.

W. H. Beyer, Handbook of Mathematical Sciences (CRC Press, Florida 1975), p. 727.

P. J. Picone, “Advanced infrared photodetectors (materials review),” Surveillance Research Laboratory Research Report, December 1993.

M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2006), pp. 6–32.

C. A. Bennett, Principles of Physical Optics (Wiley, 2008), p. 87.

E. L. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley, 1996), p. 152–190.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984), p. 47.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975), pp. 166–184.

R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, 1994), pp. 60–131.

F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer (Wiley, 1985), pp. 611–613.

E. Hecht, Optics (Pearson Education, 2002), pp. 259–279.

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004), pp. 7–30.
[CrossRef]

X. Bai, H.-D. Liu, D. C. McIntosh, and J. C. Campbell, “High-performance SiC avalanche photodiode for single ultraviolet photon detection,” Proc. SPIE 7055, 70550Q (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectroscopic data showing the optical properties of Ga-doped, laser heat-treated, and as-received 4H-SiC substrates: (a) absorbance, (b) reflectance, and (c) transmittance in the wavelength range 4 5 μm .

Fig. 2
Fig. 2

Optical arrangement to examine the detector response and ray geometry to calculate the irradiance on the SiC MWIR detector due to the radiance of a stainless steel source.

Fig. 3
Fig. 3

Reflected powers of the He–Ne beam at room and higher temperatures of the source to determine NETD. T BG is the background temperature of other materials surrounding the source. It is 25 °C in this study and the reflected power is lower than that of the source due to the difference in emissivity.

Fig. 4
Fig. 4

Effects of the radiance of the source and the number of lenses on the optical response of the detector (Ga-doped sample) compared to the as-received (undoped) sample, showing that the doped sample produces a significant optical signal at the He–Ne laser wavelength of 632.8 nm : (a) effect of the source temperature on its radiance at two wavelengths, (b) reflected powers, (c) reflectances, and (d) changes in the reflectance of the as-received and Ga-doped samples. The resolution of the Si He–Ne beam detector was 0.63 nW .

Fig. 5
Fig. 5

Effects of the radiance of the source and the number of lenses on the refractive index of the detector compared to the as-received sample, showing a significant effect on the refractive index of the detector at the He–Ne laser wavelength of 632.8 nm : (a) refractive indices and (b) changes in the refractive index of the as-received and Ga-doped samples. The resolution of the Si He–Ne beam detector was 0.63 nW .

Fig. 6
Fig. 6

Effects of the source temperature, the number of lenses, and the resolution of the Si He–Ne beam detector on the MWIR detectibility of the SiC detector: (a) threshold source temperature for MWIR detection with just the source lens and without any lens, (b) MWIR detection at room temperature ( 25 °C ) with two lenses and 0.63 nW resolution of the Si detector, and (c) effects of the resolution of the Si detector on MWIR detection by the SiC detector, showing that two lenses and 0.63 nW resolution of the Si detector enable MWIR detection at room temperature of the source.

Fig. 7
Fig. 7

Effects of S / N on the detectivity and NETD of just the SiC optical photodetector for three different time constants (10, 100, and 1000 ns ) of the detector.

Tables (2)

Tables Icon

Table 1 Optical Properties of the As-Received and Doped 4H-SiC Substrates

Tables Icon

Table 2 Performances of Various Infrared Detectors at the 4.21 μm Wavelength

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I a ( T ) = α d , λ A r s r d 2 F sl λ 0 Δ λ 0 / 2 λ 0 + Δ λ 0 / 2 L λ , s ( λ , T ) d λ ,
F sl = 1 2 { 1 + d sl 2 + r sl 2 r rs 2 [ ( 1 + d sl 2 + r sl 2 r rs 2 ) 2 4 ( r sl r rs ) 2 ] 1 / 2 }
ρ u , j = ρ a u , j + ρ a u , j ( 1 ρ a u , j ) 2 e 2 μ u , j d u 1 ρ a u , j 2 e 2 μ u , j d u , τ u , j = ( 1 ρ a u , j ) 2 e μ u , j d u 1 ρ a u , j 2 e 2 μ u , j d u ,
ρ d , j = ρ a u , j + ρ d u , j ( 1 ρ a u , j ) 2 e 2 μ u , j d u + ρ d u , j 2 ρ a u , j ( 1 ρ a u , j ) 2 e 4 μ u , j d u 1 ρ d u , j ρ a u , j e 2 μ u , j d u + ( 1 ρ a u , j ) 2 ( 1 ρ d u , j ) 2 ρ a d , j e 2 μ u , j d u e 2 μ d , j d d + ( 1 ρ a u , j ) 2 ( 1 ρ d u , j ) 2 ρ a u , j ρ a d , j ρ d u , j e 4 μ u , j d u e 2 μ d , j d d 1 ρ a u , j ρ d u , j e 2 μ u , j d u , τ d , j = ( 1 ρ a u , j ) ( 1 ρ d u , j ) ( 1 ρ a d , j ) e μ u , j d u e μ d , j d d 1 ρ a d , j ρ d u , j e 2 μ d , j d d + ( 1 ρ a u , j ) ( 1 ρ d u , j ) 3 ( 1 ρ a d , j ) ρ a u , j ρ a d , j e 3 μ u , j d u e 3 μ d , j d d + ( 1 ρ a u , j ) ( 1 ρ d u , j ) 3 ( 1 ρ a d , j ) ρ a u , j ρ a d , j ρ d u , j e 3 μ u , j d u e 5 μ d , j d d 1 ρ a d , j 2 ρ d u , j e 2 μ d , j d d ,
ρ = ( n 2 n 1 ) 2 + ( κ 2 κ 1 ) 2 ( n 2 + n 1 ) 2 + ( κ 2 + κ 1 ) 2
S N = I r , l * η e , Si A Si α Si 2 I r , l Δ f λ l h c .
NEP = 2 I r , l A Si Δ f η e , Si α Si h c λ l .
D * = A Si Δ f NEP ,
D * = η e , Si α Si 2 I r , l λ l h c .
D * = S / N ρ d , l * I i , l * Δ f A Si .
NETD = 4 F 2 D * τ 0 ( d I a d T ) λ 1 λ 2 + Δ f A d ,
( d I a ( T ) d T ) λ 1 λ 2 + = ( π ε λ , s A r s F sl α d , λ A d ) [ λ 1 λ 1 + { C 1 C 2 exp ( C 2 / λ T ) T 2 λ 6 ( exp ( C 2 / λ T ) 1 ) 2 } d λ + λ 2 λ 2 + { C 1 C 2 exp ( C 2 / λ T ) T 2 λ 6 ( exp ( C 2 / λ T ) 1 ) 2 } d λ ]

Metrics