Abstract

We introduce and demonstrate a ternary nonmechanical beam steering device based on polarization gratings (PGs). Our beam steering device employs multiple stages consisting of combinations of PGs and wave plates, which allows for a unique three-way (ternary) steering design. Ultrahigh efficiency (100%) and polarization sensitive diffraction of individual PGs allow wide steering angles (among three diffracted orders) with extremely high throughput. We report our successful demonstration of the three-stage beam steerer having a 44° field of regard with 1.7° resolution at 1550nm wavelength. A substantially high throughput of 78%–83% is observed that is mainly limited by electrode absorption and Fresnel losses.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
    [CrossRef]
  2. L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104, 033109 (2008).
    [CrossRef]
  3. C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202(2010).
    [CrossRef]
  4. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25, 785–786 (2000).
    [CrossRef]
  5. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
    [CrossRef]
  6. J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
    [CrossRef]
  7. R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15, 589–594 (2007).
    [CrossRef]
  8. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545–6555 (2000).
    [CrossRef]
  9. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett. 25, 1693–1695 (2000).
    [CrossRef]
  10. M. J. Escuti, D. R. Cairns, and G. P. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390 (2004).
    [CrossRef]

2010 (1)

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202(2010).
[CrossRef]

2009 (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

2008 (2)

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104, 033109 (2008).
[CrossRef]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[CrossRef]

2007 (2)

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15, 589–594 (2007).
[CrossRef]

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
[CrossRef]

2004 (1)

M. J. Escuti, D. R. Cairns, and G. P. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390 (2004).
[CrossRef]

2000 (3)

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104, 033109 (2008).
[CrossRef]

Cairns, D. R.

M. J. Escuti, D. R. Cairns, and G. P. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390 (2004).
[CrossRef]

Crawford, G. P.

M. J. Escuti, D. R. Cairns, and G. P. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390 (2004).
[CrossRef]

Efimov, O. M.

Escuti, M. J.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202(2010).
[CrossRef]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[CrossRef]

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15, 589–594 (2007).
[CrossRef]

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
[CrossRef]

M. J. Escuti, D. R. Cairns, and G. P. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390 (2004).
[CrossRef]

Glebov, L. B.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

Hosting, L.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[CrossRef]

Jones, W. M.

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15, 589–594 (2007).
[CrossRef]

Kim, J.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202(2010).
[CrossRef]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[CrossRef]

Komanduri, R. K.

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15, 589–594 (2007).
[CrossRef]

Maker, P.

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104, 033109 (2008).
[CrossRef]

Muller, R.

Muth, J.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202(2010).
[CrossRef]

Oh, C.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202(2010).
[CrossRef]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[CrossRef]

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
[CrossRef]

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15, 589–594 (2007).
[CrossRef]

Psaltis, D.

Serati, S.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202(2010).
[CrossRef]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[CrossRef]

Shi, L.

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104, 033109 (2008).
[CrossRef]

Smirnov, V. I.

Tervo, J.

Turunen, J.

Wang, X.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

Wilson, D.

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202(2010).
[CrossRef]

J. Appl. Phys. (2)

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104, 033109 (2008).
[CrossRef]

M. J. Escuti, D. R. Cairns, and G. P. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390 (2004).
[CrossRef]

J. Soc. Inf. Disp. (1)

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15, 589–594 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
[CrossRef]

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97, 1078–1096 (2009).
[CrossRef]

Proc. SPIE (1)

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

PG structure and single steering stage: (a) side view of a PG (on/off-state), showing LC director profile, (b) beam steering in single steering stage containing a WP and a PG, having different diffraction behavior with RCP and LCP incident light.

Fig. 2
Fig. 2

Ternary PG beam steering design: (a) three-stage ( N = 3 ) ternary steerer design has M = 27 discrete steering angles (only 9 illustrated, Ω l = sin θ l ), (b) number of steering angles and calculated transmittance versus number of stages. Three cases of { η + 1 , D , R , A } in Eq. (5) are shown, as described in the text.

Fig. 3
Fig. 3

Measured output of the N = 3 ternary PG steerer operating at 1550 nm : (a) relative power (i.e., transmittance) at all output angles for two intended mainlobe steering angles ( 22 ° and 0 ° ) (inset: composite image of photographs of the 27 steered beams on an IR viewing card), (b) transmittance and diffraction efficiency of the mainlobe for all steering angles.

Tables (1)

Tables Icon

Table 1 Individual PG Characterization Data

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η 0 = cos 2 ( Γ / 2 ) ,
η ± 1 = ( 1 / 2 ) ( 1 S 3 ) sin 2 ( Γ / 2 ) ,
M = 3 N ,
r = FOR / ( 3 N 1 ) ,
sin θ l = sin ( ( 3 l 1 ) r / 2 ) sin ( ( 3 l 1 1 ) r / 2 ) ,
Λ l = λ / sin θ l ,
sin Θ = l = 1 N ( 1 ) V l WP V l PG sin θ l ,
T = ( η + 1 ) N ( 1 D ) N ( 1 R ) 2 N ( 1 A ) 2 N ,

Metrics