Abstract

The application of nematic liquid crystal infiltrated photonic crystal fiber as a sensor for electric field intensity measurement is demonstrated. The device is based on an intrinsic sensing mechanism for electric fields. The sensor probe, which consists of a 1cm infiltrated section of photonic crystal fiber with a lateral size of 125μm, is very compact with small size and weight. A simple all-fiber design for the sensor is employed in an intensity based measurement scheme. The transmitted and reflected power of the infiltrated photonic crystal fiber is shown to have a linear response with the applied electric field. The sensor is operated in the telecommunication window at 1550nm. The temperature dependence of the device at this operating wavelength is also experimentally studied and discussed. These structures can be used to accurately measure electric field intensity and can be used for the fabrication of all-fiber sensors for high electric field environments as both an in-line and reflective type point sensor.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
    [Crossref] [PubMed]
  2. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
    [Crossref] [PubMed]
  3. T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
    [Crossref]
  4. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
    [Crossref]
  5. L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
    [Crossref] [PubMed]
  6. S. Mathews, Y. Semenova, and G. Farrell, “Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fiber,” Electron. Lett. 45, 617–618 (2009).
    [Crossref]
  7. V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
    [Crossref]
  8. C. Gutiérrez-Martinez, J. Santos-Aguilar, and R. Ochoa-Valiente, “An all-fiber and integrated optics electric field sensing scheme using matched optical delays and coherence modulation of light,” Meas. Sci. Technol. 18, 3223–3229(2007).
    [Crossref]
  9. H. Togo, N. Kukutsu, N. Shimizu, and T. Nagatsuma, “Sensitivity-stabilized fiber-mounted electrooptic probe for electric field mapping,” J. Lightwave Technol. 26, 2700–2705 (2008).
    [Crossref]
  10. M. Bernier, G. Gaborit, L. Du Villaret, A. Paupet, and J. L. Lasserre, “Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes,” Appl. Opt. 47, 2470–2476 (2008).
    [Crossref] [PubMed]
  11. C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
    [Crossref]
  12. A. Michie, I. Bassett, and J. Haywood, “Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer,” Meas. Sci. Technol. 17, 1229–1233 (2006).
    [Crossref]
  13. S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A, Phys. 167, 54–59 (2011).
    [Crossref]
  14. S. Mathews, G. Farrell, and Y. Semenova, “Directional electric field sensitivity of liquid crystal infiltrated photonic crystal fiber,” IEEE Photon. Technol. Lett. 23, 408–410 (2011).
    [Crossref]
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonating reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  16. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
    [Crossref]
  17. D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).
    [Crossref]
  18. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
    [Crossref]
  19. J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
    [Crossref]

2011 (2)

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A, Phys. 167, 54–59 (2011).
[Crossref]

S. Mathews, G. Farrell, and Y. Semenova, “Directional electric field sensitivity of liquid crystal infiltrated photonic crystal fiber,” IEEE Photon. Technol. Lett. 23, 408–410 (2011).
[Crossref]

2009 (1)

S. Mathews, Y. Semenova, and G. Farrell, “Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fiber,” Electron. Lett. 45, 617–618 (2009).
[Crossref]

2008 (2)

2007 (4)

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
[Crossref]

C. Gutiérrez-Martinez, J. Santos-Aguilar, and R. Ochoa-Valiente, “An all-fiber and integrated optics electric field sensing scheme using matched optical delays and coherence modulation of light,” Meas. Sci. Technol. 18, 3223–3229(2007).
[Crossref]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[Crossref] [PubMed]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

2006 (3)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

A. Michie, I. Bassett, and J. Haywood, “Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer,” Meas. Sci. Technol. 17, 1229–1233 (2006).
[Crossref]

2005 (2)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

2004 (1)

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

2003 (1)

2002 (2)

C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
[Crossref]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonating reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[Crossref]

Abeeluck, A. K.

Alkeskjold, T. T.

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[Crossref] [PubMed]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

Bassett, I.

A. Michie, I. Bassett, and J. Haywood, “Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer,” Meas. Sci. Technol. 17, 1229–1233 (2006).
[Crossref]

Bassi, P.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

Bernier, M.

Bjarklev, A.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
[Crossref] [PubMed]

Broeng, J.

Dabrowski, R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

De Leonardis, F.

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

Dell’Olio, F.

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

Demokan, M. S.

Demus, D.

D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).
[Crossref]

Domanski, A. W.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

Du Villaret, L.

Eggleton, B. J.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Ertman, S.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

Farrell, G.

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A, Phys. 167, 54–59 (2011).
[Crossref]

S. Mathews, G. Farrell, and Y. Semenova, “Directional electric field sensitivity of liquid crystal infiltrated photonic crystal fiber,” IEEE Photon. Technol. Lett. 23, 408–410 (2011).
[Crossref]

S. Mathews, Y. Semenova, and G. Farrell, “Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fiber,” Electron. Lett. 45, 617–618 (2009).
[Crossref]

Gaborit, G.

Gauza, S.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

Gooby, J.

D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).
[Crossref]

Gray, G. W.

D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).
[Crossref]

Gutiérrez-Martinez, C.

C. Gutiérrez-Martinez, J. Santos-Aguilar, and R. Ochoa-Valiente, “An all-fiber and integrated optics electric field sensing scheme using matched optical delays and coherence modulation of light,” Meas. Sci. Technol. 18, 3223–3229(2007).
[Crossref]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Haywood, J.

A. Michie, I. Bassett, and J. Haywood, “Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer,” Meas. Sci. Technol. 17, 1229–1233 (2006).
[Crossref]

Headley, C.

Hermann, D.

Jin, W.

Kruszelnicki, E. N.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

Kukutsu, N.

Lægsgaard, J.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[Crossref] [PubMed]

Larsen, T.

Lasserre, J. L.

Lesiak, P.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

Li, C.

C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
[Crossref]

Li, J.

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

Litchinitser, N. M.

Mathews, S.

S. Mathews, G. Farrell, and Y. Semenova, “Directional electric field sensitivity of liquid crystal infiltrated photonic crystal fiber,” IEEE Photon. Technol. Lett. 23, 408–410 (2011).
[Crossref]

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A, Phys. 167, 54–59 (2011).
[Crossref]

S. Mathews, Y. Semenova, and G. Farrell, “Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fiber,” Electron. Lett. 45, 617–618 (2009).
[Crossref]

Michie, A.

A. Michie, I. Bassett, and J. Haywood, “Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer,” Meas. Sci. Technol. 17, 1229–1233 (2006).
[Crossref]

Nagatsuma, T.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Noordegraaf, D.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[Crossref] [PubMed]

Ochoa-Valiente, R.

C. Gutiérrez-Martinez, J. Santos-Aguilar, and R. Ochoa-Valiente, “An all-fiber and integrated optics electric field sensing scheme using matched optical delays and coherence modulation of light,” Meas. Sci. Technol. 18, 3223–3229(2007).
[Crossref]

Passaro, V. M. N.

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

Paupet, A.

Riishede, J.

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Rindorf, L.

Santos-Aguilar, J.

C. Gutiérrez-Martinez, J. Santos-Aguilar, and R. Ochoa-Valiente, “An all-fiber and integrated optics electric field sensing scheme using matched optical delays and coherence modulation of light,” Meas. Sci. Technol. 18, 3223–3229(2007).
[Crossref]

Scolari, L.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[Crossref] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Semenova, Y.

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A, Phys. 167, 54–59 (2011).
[Crossref]

S. Mathews, G. Farrell, and Y. Semenova, “Directional electric field sensitivity of liquid crystal infiltrated photonic crystal fiber,” IEEE Photon. Technol. Lett. 23, 408–410 (2011).
[Crossref]

S. Mathews, Y. Semenova, and G. Farrell, “Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fiber,” Electron. Lett. 45, 617–618 (2009).
[Crossref]

Shimizu, N.

Spiess, H. W.

D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).
[Crossref]

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

Tartarini, G.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

Togo, H.

Vill, V.

D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).
[Crossref]

Wang, Y.

Wei, L.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

Weirich, J.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

Wojcik, J.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

Wolinski, T. R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

Wu, S. T.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

Xiao, L.

Yoshino, T.

C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
[Crossref]

Zhao, C.

Appl. Opt. (1)

Electron. Lett. (1)

S. Mathews, Y. Semenova, and G. Farrell, “Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fiber,” Electron. Lett. 45, 617–618 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Mathews, G. Farrell, and Y. Semenova, “Directional electric field sensitivity of liquid crystal infiltrated photonic crystal fiber,” IEEE Photon. Technol. Lett. 23, 408–410 (2011).
[Crossref]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

J. Appl. Phys. (1)

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (3)

C. Gutiérrez-Martinez, J. Santos-Aguilar, and R. Ochoa-Valiente, “An all-fiber and integrated optics electric field sensing scheme using matched optical delays and coherence modulation of light,” Meas. Sci. Technol. 18, 3223–3229(2007).
[Crossref]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N. Kruszelnicki, and J. Wojcik, “Influence of temperature and electric fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17, 985–991 (2006).
[Crossref]

A. Michie, I. Bassett, and J. Haywood, “Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer,” Meas. Sci. Technol. 17, 1229–1233 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[Crossref]

Prog. Quantum Electron. (1)

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30, 45–73 (2006).
[Crossref]

Sens. Actuators A, Phys. (1)

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A, Phys. 167, 54–59 (2011).
[Crossref]

Other (1)

D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Orientation of LC molecules within PCF holes below and above the threshold field, (b) NLC infiltrated PCF probe for electric field sensing within electrodes, (c) SEM image of LMA-8 cross section (fiber specs sheet, NKT Photonics).

Fig. 2
Fig. 2

Broadband transmission spectrum ( 600 1700 nm ) of MDA-50-2782 infiltrated LMA-8 PCF.

Fig. 3
Fig. 3

Schematic of the experimental setup to study the electronic tunability and temperature dependence of the NLC infiltrated PCF.

Fig. 4
Fig. 4

Schematic of the experimental setup to study reflected power response of the infiltrated PCF.

Fig. 5
Fig. 5

Transmission response of MDA-05-2782 infiltrated LMA-8 with a changing electric field intensity ( 1 kHz ) at 1550 nm measured at room temperature.

Fig. 6
Fig. 6

Linear part of the transmission response of MDA-05-2782 infiltrated LMA-8 with electric field intensity ( 1 kHz ) at 1550 nm shown with a linear fit.

Fig. 7
Fig. 7

Transmission response of MDA-05-2782 infiltrated LMA-8 with electric field intensity ( 50 Hz ) at 1550 nm measured at room temperature.

Fig. 8
Fig. 8

Reflected power response of MDA-05-2782 infiltrated LMA-8 with a changing electric field intensity ( 1 kHz ) at 1550 nm measured at room temperature.

Fig. 9
Fig. 9

Linear part of the reflected power response of MDA-05-2782 infiltrated LMA-8 with electric field intensity ( 1 kHz ) at 1550 nm shown with a linear fit.

Fig. 10
Fig. 10

Transmission response of the sensor versus electric field intensity at different temperatures from 10 °C to 90 °C .

Fig. 11
Fig. 11

Reflection response of the sensor versus electric field intensity at different temperatures from 10 °C to 90 °C .

Fig. 12
Fig. 12

Electric field sensitivity variation with temperature change for transmission and reflection modes.

Tables (1)

Tables Icon

Table 1 Comparison of Electric Field Sensing Parameters of MDA-05-2782 Infiltrated LMA-8 in Different Modes

Metrics