Abstract

We are proposing a procedure to reconfigure a three-port photonic crystal channel drop filter with two point-defect resonant cavities coupled to a bus and a drop W1-type waveguide, by means of selective optofluidic infiltration. Simulations show that, by selective infiltration of cavities and the air holes of the two parallel line defects that are partially surrounding the bus waveguide of the proposed channel drop filter (CDF), besides fine-tuning of the cavities resonant frequencies to the desired values, one can also fine-tune the CDF phase to an optimum condition for achieving optimum drop efficiency for any given resonant frequency. We have used the 2D finite difference time domain and plane wave method to perform the numerical simulations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  2. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
    [CrossRef]
  3. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing using photonic crystals,” Appl. Opt. 40, 2247–2252 (2001).
    [CrossRef]
  4. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
    [CrossRef] [PubMed]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
    [CrossRef]
  6. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
    [CrossRef]
  7. H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446–2458 (2006).
    [CrossRef] [PubMed]
  8. H. Ren, C. Jiang, W. Hu, Mi. Gao, Y. Qu, and F. Wang, “Channel drop filter in two-dimensional triangular lattice photonic crystals,” J. Opt. Soc. Am. A 24, A7–A11(2007).
    [CrossRef]
  9. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals enhanced light-matter interactions for lab-on-a-chip applications,” Microfluidics Nanofluidics 4, 117–127(2007).
    [CrossRef]
  10. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
    [CrossRef]
  11. H. Kurt and D. S. Citrin, “Reconfigurable multimode photonic-crystal waveguides,” Opt. Express 16, 11995–12001(2008).
    [CrossRef] [PubMed]
  12. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
    [CrossRef] [PubMed]
  13. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
    [CrossRef]
  14. S. Kim, I. Park, H. Lim, and C.-S. Kee, “Highly efficient photonic crystal-based multi-channel drop-filters of three-port system with reflection feedback,” Opt. Express 12, 5518–5525(2004).
    [CrossRef] [PubMed]
  15. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  16. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
    [CrossRef]
  17. A. Lavrinenko, P. Borel, L. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248 (2004).
    [CrossRef] [PubMed]
  18. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59–61 (2006).
    [CrossRef] [PubMed]
  19. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
    [CrossRef]
  20. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
    [CrossRef] [PubMed]
  21. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
    [CrossRef]

2009 (1)

2008 (2)

2007 (5)

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
[CrossRef] [PubMed]

H. Ren, C. Jiang, W. Hu, Mi. Gao, Y. Qu, and F. Wang, “Channel drop filter in two-dimensional triangular lattice photonic crystals,” J. Opt. Soc. Am. A 24, A7–A11(2007).
[CrossRef]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals enhanced light-matter interactions for lab-on-a-chip applications,” Microfluidics Nanofluidics 4, 117–127(2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

2006 (4)

H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446–2458 (2006).
[CrossRef] [PubMed]

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59–61 (2006).
[CrossRef] [PubMed]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

2004 (2)

2001 (1)

1999 (2)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[CrossRef]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[CrossRef]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

Bettotti, P.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Bog, U.

Borel, P.

Borel, P. I.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Busch, K.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[CrossRef]

Chong, H.

Citrin, D. S.

Colocci, M.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B. J.

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef] [PubMed]

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

Emery, T.

Erickson, D.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

Frandsen, L.

Frandsen, L. H.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Freeman, D.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Gao, M.

Gao, Mi.

Giessen, H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Grillet, C.

Harpøth, A.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

A. Lavrinenko, P. Borel, L. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248 (2004).
[CrossRef] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

Hede, K. K.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Hu, W.

Intonti, F.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Jiang, C.

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

John, S.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[CrossRef]

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Karnutsch, C.

Kee, C.-S.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[CrossRef]

Kim, S.

Krauss, T. F.

Kristensen, M.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

A. Lavrinenko, P. Borel, L. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248 (2004).
[CrossRef] [PubMed]

Kurt, H.

Lavrinenko, A.

Lee, M. W.

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Lee, Y. H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Lim, H.

Luther-Davies, B.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Madden, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[CrossRef]

McPhedran, R. C.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Monat, C.

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef] [PubMed]

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals enhanced light-matter interactions for lab-on-a-chip applications,” Microfluidics Nanofluidics 4, 117–127(2007).
[CrossRef]

Niemi, T.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

A. Lavrinenko, P. Borel, L. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248 (2004).
[CrossRef] [PubMed]

O’Faolain, L.

Park, I.

Pavesi, L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals enhanced light-matter interactions for lab-on-a-chip applications,” Microfluidics Nanofluidics 4, 117–127(2007).
[CrossRef]

Prather, D. W.

Psaltis, D.

Qiang, Z.

Qu, Y.

Ren, H.

Rockwood, T.

Ruan, Y.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Scherer, A.

Schweizer, S. L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Sharkawy, A.

Shi, S.

Smith, C. L. C.

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Soref, R. A.

Thorhauge, M.

Tomljenovic-Hanic, S.

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Turck, V.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Vignolini, S.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

Wang, F.

Wang, J.

Wehrspohn, R.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Wiersma, D.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Wu, D. K. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals enhanced light-matter interactions for lab-on-a-chip applications,” Microfluidics Nanofluidics 4, 117–127(2007).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Zhou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microfluidics Nanofluidics (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals enhanced light-matter interactions for lab-on-a-chip applications,” Microfluidics Nanofluidics 4, 117–127(2007).
[CrossRef]

Nat. Photon. (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[CrossRef]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of a three-port CDF based on 2D PhC structure with triangular lattice of constant a. The CDF is composed of two identical point-defect cavities (a and b) of radii r C = r C a = r C b > r , a W1-type drop waveguide in Γ K direction ( 60 ° from horizontal), and also a W1-type bus waveguide in Γ K direction (horizontal), modified with two parallel line defects of length L φ ( < L ) that are created with air holes of radii r ld > r , on the borders of the W1 waveguide.

Fig. 2
Fig. 2

Color chart representing a cavity’s resonant frequency (right axis) that vary with a cavity’s radius (horizontal axis) as well as the refractive indices of the infiltrating fluids (left axis).

Fig. 3
Fig. 3

Allowed waveguides’ modes for W1-type bus waveguide with no line defects (open circles) compared with those of W1-type bus waveguide modified with two parallel line defects of length L φ having air holes of radii r ld = 0.395 a , 0.396 a , 0.397 a , and 0.398 a , all infiltrated with an optofluidic of index n F W = 1.7 .

Fig. 4
Fig. 4

Modes of W1-bus waveguide modified with two parallel line defects with air holes of radii r ld = 0.397 a infiltrated with optofluidics of refractive indices 1.3 (solid line), 1.7 (stars), and 2.1 (dashed line).

Fig. 5
Fig. 5

(a) CDF phase versus the cavities’ resonant frequencies for the bus waveguide of length L = 26 a surrounded by two parallel line defects of length L φ = 15 a , having air holes of radii r ld = 0.397 a , infiltrated with optofluidics of various refractive indices ( n F W = 1.3 to 2.1). (b) Variation in the phase ( Δ φ ) versus variation in the fluid refractive index ( Δ n F W ) for four selected resonant frequencies. Negative slope lines are indicated with m.

Fig. 6
Fig. 6

Transmission spectra at ports A (a), port B (b), and backreflection spectra at port C (c) for six different examples (CDF1–CDF6), with specifications given in Table 1.

Tables (1)

Tables Icon

Table 1 Refractive Indices ( n F C and n F W ) for Infiltrating Cavities of Radii r C = 0.575 a and Infiltrated Line Defects with Air Holes of Radii r ld = 0.397 a Constituting Various CDFs of Fig. 6 a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = 4 κ ( 1 cos φ ) κ 2 + 2 κ ( 1 cos φ ) + 2 ( 1 cos φ ) ,
φ = φ + Δ φ = 2 β L + 2 ( β β ) L φ ,

Metrics