Abstract

We designed a 10PW (150J15fs) laser system based on the use of titanium-doped sapphire power amplifiers. The solution is to provide an overall compensating spectral gain narrowing and shifting technique for obtaining a controlled output spectrum.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high-intensity 300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114(2008).
    [CrossRef] [PubMed]
  2. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100 TW sub-20 fs Ti:sapphire laser system operating at a 10 Hz repetition rate,” Opt. Lett. 23, 1468–1470(1998).
    [CrossRef]
  3. K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry, and J L. Collier, “ASE suppression in a high energy titanium sapphire amplifier,” Opt. Express 16, 8039–8049 (2008).
    [CrossRef] [PubMed]
  4. Y. Tang, I. N. Ross, C. Hernandez-Gomez, G. H. C. New, I. Musgrave, O. V. Chekhlov, P. Matousek, and J. L. Collier, “Optical parametric chirped-pulse amplification source suitable for seeding high-energy systems,” Opt. Lett. 33, 2386–2388 (2008).
    [CrossRef] [PubMed]
  5. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
    [CrossRef] [PubMed]
  6. A. Thai, C. Skrobol, P. K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, and Jens Biegert, “Simulations of petawatt-class few-cycle optical parametric chirped-pulse amplification, including nonlinear refractive index effects,” Opt. Lett. 35, 3471–3473 (2010).
    [CrossRef] [PubMed]
  7. K. Yamakawa and C. P. J. Barty, “Two-color chirped-pulse amplification in an ultrabroadband Ti:sapphire ring regenerative amplifier,” Opt. Lett. 28, 2402–2404 (2003).
    [CrossRef] [PubMed]
  8. A. A. Eilanlou, Y. Nabekawa, K. L. Ishikawa, H. Takahashi, and K. Midorikawa, “Direct amplification of terawatt sub-10 fs pulses in a CPA system of Ti:sapphire laser,” Opt. Express 16, 13431–13438 (2008).
    [CrossRef]
  9. M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Sconnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059–1062 (2005).
    [CrossRef]
  10. X. Ribeyre, L. Videau, A. Migus, R. Mercier, and M. Mullot, “Nd:glass diode-pumped regenerative amplifier, multimillijoule short-pulse chirped-pulse-amplifier laser,” Opt. Lett. 28, 1374–1376 (2003).
    [CrossRef] [PubMed]
  11. H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006).
    [CrossRef] [PubMed]
  12. L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
    [CrossRef]
  13. C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and implementation of a TW-class high-average power laser system,” IEEE J. Sel. Top. Quantum Electron. 4, 395–406 (1998).
    [CrossRef]
  14. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, and A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous wave single-mode laser,” Opt. Lett. 16, 144–146(1991).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
[CrossRef] [PubMed]

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
[CrossRef]

2008 (4)

2006 (1)

2005 (1)

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Sconnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059–1062 (2005).
[CrossRef]

2003 (2)

1998 (2)

K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100 TW sub-20 fs Ti:sapphire laser system operating at a 10 Hz repetition rate,” Opt. Lett. 23, 1468–1470(1998).
[CrossRef]

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and implementation of a TW-class high-average power laser system,” IEEE J. Sel. Top. Quantum Electron. 4, 395–406 (1998).
[CrossRef]

1991 (1)

Akahane, Y.

Antonucci, L.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
[CrossRef]

Aoyama, M.

Arisholm, G.

Backus, S.

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and implementation of a TW-class high-average power laser system,” IEEE J. Sel. Top. Quantum Electron. 4, 395–406 (1998).
[CrossRef]

Barty, C. P. J.

Bates, P. K.

Biegert, Jens

Brun, A.

Chekhlov, O. V.

Cheriaux, G.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
[CrossRef]

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high-intensity 300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114(2008).
[CrossRef] [PubMed]

Chvykov, V.

Collier, J L.

Collier, J. L.

Durfee, C. G.

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and implementation of a TW-class high-average power laser system,” IEEE J. Sel. Top. Quantum Electron. 4, 395–406 (1998).
[CrossRef]

Eilanlou, A. A.

Ertel, K.

Estable, F.

Georges, P.

Grangier, P.

Hawkes, S. J.

Hernandez-Gomez, C.

Herrmann, D.

Hooker, C.

Ishikawa, K. L.

Jullien, A.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
[CrossRef]

Kakehata, M.

Kalashnikov, M. P.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Sconnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059–1062 (2005).
[CrossRef]

Kalinchenko, G.

Kapteyn, H. C.

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and implementation of a TW-class high-average power laser system,” IEEE J. Sel. Top. Quantum Electron. 4, 395–406 (1998).
[CrossRef]

Karsch, S.

Kase, T.

Krausz, F.

Krushelnick, K.

Lachko, I. M.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Sconnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059–1062 (2005).
[CrossRef]

Laude, V.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
[CrossRef]

Major, Z.

Maksimchuk, A.

Matousek, P.

Matsuoka, S.

Matsuoka, T.

Mercier, B.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
[CrossRef]

Mercier, R.

Midorikawa, K.

Migus, A.

Mourou, G.

Mullot, M.

Murnane, M. M.

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and implementation of a TW-class high-average power laser system,” IEEE J. Sel. Top. Quantum Electron. 4, 395–406 (1998).
[CrossRef]

Musgrave, I.

Nabekawa, Y.

Nees, J.

New, G. H. C.

Osvay, K.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Sconnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059–1062 (2005).
[CrossRef]

Parry, B. T.

Pervak, V.

Planchon, T.

Poizat, J. P.

Ribeyre, X.

Ross, I. N.

Rousseau, J. P.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
[CrossRef]

Rousseau, P.

Salin, F.

Sandner, W.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Sconnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059–1062 (2005).
[CrossRef]

Schmid, K.

Sconnagel, H.

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Sconnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059–1062 (2005).
[CrossRef]

Skrobol, C.

Takada, H.

Takahashi, H.

Takuma, H.

Tang, Y.

Tautz, R.

Tavella, F.

Thai, A.

Torizuka, K.

Veisz, L.

Videau, L.

Yamakawa, K.

Yanovsky, V.

Appl. Phys. B (1)

M. P. Kalashnikov, K. Osvay, I. M. Lachko, H. Sconnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059–1062 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and implementation of a TW-class high-average power laser system,” IEEE J. Sel. Top. Quantum Electron. 4, 395–406 (1998).
[CrossRef]

Opt. Commun. (1)

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379(2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

Y. Tang, I. N. Ross, C. Hernandez-Gomez, G. H. C. New, I. Musgrave, O. V. Chekhlov, P. Matousek, and J. L. Collier, “Optical parametric chirped-pulse amplification source suitable for seeding high-energy systems,” Opt. Lett. 33, 2386–2388 (2008).
[CrossRef] [PubMed]

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
[CrossRef] [PubMed]

A. Thai, C. Skrobol, P. K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, and Jens Biegert, “Simulations of petawatt-class few-cycle optical parametric chirped-pulse amplification, including nonlinear refractive index effects,” Opt. Lett. 35, 3471–3473 (2010).
[CrossRef] [PubMed]

K. Yamakawa and C. P. J. Barty, “Two-color chirped-pulse amplification in an ultrabroadband Ti:sapphire ring regenerative amplifier,” Opt. Lett. 28, 2402–2404 (2003).
[CrossRef] [PubMed]

K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100 TW sub-20 fs Ti:sapphire laser system operating at a 10 Hz repetition rate,” Opt. Lett. 23, 1468–1470(1998).
[CrossRef]

X. Ribeyre, L. Videau, A. Migus, R. Mercier, and M. Mullot, “Nd:glass diode-pumped regenerative amplifier, multimillijoule short-pulse chirped-pulse-amplifier laser,” Opt. Lett. 28, 1374–1376 (2003).
[CrossRef] [PubMed]

H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006).
[CrossRef] [PubMed]

P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, and A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous wave single-mode laser,” Opt. Lett. 16, 144–146(1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental demonstration of the filter corrective action. It is possible to save the spectrum at the input of the amplifier. (b) Experimental spectrum at the output if the target spectrum is a Gaussian of 55 nm centered at λ = 810 nm .

Fig. 2
Fig. 2

Design of Apollon-10P laser chain.

Fig. 3
Fig. 3

Amplification simulation results (a) with and (b) without spectral shaping before each amplifier except the last one. The solid curve spectrum in (a) represents the filtered output spectrum and has a quasi-Gaussian shape.

Fig. 4
Fig. 4

Simulation results: (a) four filter spectral dependencies, (b) spectra FFT FWHM evolution with and without spectral filtering, and (c) output FFT spectra comparison with and without filters in log scale.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I p + 1 ( t ) = I p ( t ) [ 1 ( 1 G p + 1 1 ( ω ) ) exp ( J p ( t ) J sat ) ] 1 ,
G p + 1 ( ω ) = exp [ J sat ln ( G p ( ω ) ) ( J p + 1 ( ) J p ( ) ) J sat ] ,
J p ( t ) = 0 t I p ( t ) J sat ( ω ) = h ω 2 π σ e ,
G 0 ( ω ) = A J p η c η q 2 π σ e h ω σ e ( ω ) = σ a 1 + [ T 2 ( ω ω a ) ] 2 .

Metrics