Abstract

We investigate the cloud detection efficiency of existing and future spaceborne visible-to-infrared imagers, focusing on several threshold tests for cloud detection over different types of ground surfaces, namely, the ocean, desert, vegetation, semibare land, and cryosphere. In this investigation, we used the CLoud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA), which was developed for unbiased cloud detection. It was revealed that imagers with fewer bands than the Moderate Resolution Imaging Spectroradiometer tend to have cloudy shifts. An imager without any infrared bands could yield cloudy shifts up to 17% over the ocean. To avoid false recognition of Sun glint as clouds, the 0.905 and 0.935μm bands are needed in addition to the infrared bands. In reflectance ratio tests, the 0.87 and 1.6μm bands can effectively distinguish clouds from desert. In the case of desert, thermal–infrared bands are ineffective when the desert surface temperature is low during winter. The 3.9 and 11μm bands are critical for distinguishing between clear and cloudy pixels over snow-/ice-covered areas. The results and discussions of this research can guide CLAUDIA users in the optimization of thresholds. Here, we propose a virtual imager called the cloud detection imager, which has seven or eight bands for efficient cloud detection.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Solomon, Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, 2007).
  2. M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
    [CrossRef]
  3. T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, and M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
    [CrossRef]
  4. S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
    [CrossRef]
  5. L. L. Stowe, P. A. Davis, and E. P. McClain, “Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm for the advanced very high resolution radiometer,” J. Atmos. Ocean. Technol. 16, 656–681 (1999).
    [CrossRef]
  6. A. V. Di Vittorio and W. J. Emery, “An automated, dynamic threshold cloud-masking algorithm for daytime AVHRR images over land,” IEEE Trans. Geosci. Remote Sens. 40, 1682–1694 (2002).
    [CrossRef]
  7. K. T. Kriebel, G. Gesell, M. Kästner, and H. Mannstein, “The cloud analysis tool APOLLO: improvements and validations,” Int. J. Remote Sens. 24, 2389–2408 (2003).
    [CrossRef]
  8. L. Gomez-Chova and G. Camps-Valls, “Cloud-screening algorithm for ENVISAT/MERIS multispectral images,” IEEE Trans. Geosci. Remote Sens. 45, 4105–4118 (2007)
    [CrossRef]
  9. S. A. Ackerman and Richard A. Frey, “GLI/MODIS cloud mask results, comparisons, and validation,” Proc. SPIE 5652, 17–21 (2004).
    [CrossRef]
  10. H. Ishida and T. Y. Nakajima, “Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager,” J. Geophys. Res. 114, D07206 (2009).
    [CrossRef]
  11. H. Shimoda, “GCOM missions,” Proc. SPIE 6407, 640708(2006).
    [CrossRef]
  12. J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
    [CrossRef]
  13. R. V. Gelsthorpe, A. Heliere, A. Lefebvre, J. Lemanczyk, E. Mateu, and K. Wallace, “EarthCARE and its payload,” Proc. SPIE 7152, 715207 (2008).
    [CrossRef]
  14. K. B. Kidwell, “NOAA polar orbiter data (POD) user’s guide,” in NOAA Satellite and Information Service, National Environmental Satellite, Data and Information Service (NESDIS), http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/index.htm (1998).
    [PubMed]
  15. T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
    [CrossRef]
  16. H. Ishida, T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, “Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison,” J. Appl. Meteorol. Climatol. (to be published).
  17. S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).
  18. J. Hocking, P. N. Francis, and R. Saunders, “Cloud detection in Meteosat Second Generation imagery at the Met Office,” Meteorol. Appl. (to be published).
    [CrossRef]

2009

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

2007

L. Gomez-Chova and G. Camps-Valls, “Cloud-screening algorithm for ENVISAT/MERIS multispectral images,” IEEE Trans. Geosci. Remote Sens. 45, 4105–4118 (2007)
[CrossRef]

2004

S. A. Ackerman and Richard A. Frey, “GLI/MODIS cloud mask results, comparisons, and validation,” Proc. SPIE 5652, 17–21 (2004).
[CrossRef]

2003

K. T. Kriebel, G. Gesell, M. Kästner, and H. Mannstein, “The cloud analysis tool APOLLO: improvements and validations,” Int. J. Remote Sens. 24, 2389–2408 (2003).
[CrossRef]

2002

A. V. Di Vittorio and W. J. Emery, “An automated, dynamic threshold cloud-masking algorithm for daytime AVHRR images over land,” IEEE Trans. Geosci. Remote Sens. 40, 1682–1694 (2002).
[CrossRef]

1999

L. L. Stowe, P. A. Davis, and E. P. McClain, “Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm for the advanced very high resolution radiometer,” J. Atmos. Ocean. Technol. 16, 656–681 (1999).
[CrossRef]

1998

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
[CrossRef]

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, and M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[CrossRef]

1992

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Ackerman, S.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Ackerman, S. A.

S. A. Ackerman and Richard A. Frey, “GLI/MODIS cloud mask results, comparisons, and validation,” Proc. SPIE 5652, 17–21 (2004).
[CrossRef]

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
[CrossRef]

Baum, B.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Bezy, J.-L.

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

Camps-Valls, G.

L. Gomez-Chova and G. Camps-Valls, “Cloud-screening algorithm for ENVISAT/MERIS multispectral images,” IEEE Trans. Geosci. Remote Sens. 45, 4105–4118 (2007)
[CrossRef]

Davis, P. A.

L. L. Stowe, P. A. Davis, and E. P. McClain, “Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm for the advanced very high resolution radiometer,” J. Atmos. Ocean. Technol. 16, 656–681 (1999).
[CrossRef]

Di Vittorio, A. V.

A. V. Di Vittorio and W. J. Emery, “An automated, dynamic threshold cloud-masking algorithm for daytime AVHRR images over land,” IEEE Trans. Geosci. Remote Sens. 40, 1682–1694 (2002).
[CrossRef]

Eguchi, N.

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

Emery, W. J.

A. V. Di Vittorio and W. J. Emery, “An automated, dynamic threshold cloud-masking algorithm for daytime AVHRR images over land,” IEEE Trans. Geosci. Remote Sens. 40, 1682–1694 (2002).
[CrossRef]

Francis, P. N.

J. Hocking, P. N. Francis, and R. Saunders, “Cloud detection in Meteosat Second Generation imagery at the Met Office,” Meteorol. Appl. (to be published).
[CrossRef]

Frey, R.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Frey, R. A.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
[CrossRef]

Frey, Richard A.

S. A. Ackerman and Richard A. Frey, “GLI/MODIS cloud mask results, comparisons, and validation,” Proc. SPIE 5652, 17–21 (2004).
[CrossRef]

Fukushima, H.

Gelsthorpe, R. V.

R. V. Gelsthorpe, A. Heliere, A. Lefebvre, J. Lemanczyk, E. Mateu, and K. Wallace, “EarthCARE and its payload,” Proc. SPIE 7152, 715207 (2008).
[CrossRef]

Gesell, G.

K. T. Kriebel, G. Gesell, M. Kästner, and H. Mannstein, “The cloud analysis tool APOLLO: improvements and validations,” Int. J. Remote Sens. 24, 2389–2408 (2003).
[CrossRef]

Gomez-Chova, L.

L. Gomez-Chova and G. Camps-Valls, “Cloud-screening algorithm for ENVISAT/MERIS multispectral images,” IEEE Trans. Geosci. Remote Sens. 45, 4105–4118 (2007)
[CrossRef]

Gumley, L.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Gumley, L. E.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
[CrossRef]

Heliere, A.

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

R. V. Gelsthorpe, A. Heliere, A. Lefebvre, J. Lemanczyk, E. Mateu, and K. Wallace, “EarthCARE and its payload,” Proc. SPIE 7152, 715207 (2008).
[CrossRef]

Hocking, J.

J. Hocking, P. N. Francis, and R. Saunders, “Cloud detection in Meteosat Second Generation imagery at the Met Office,” Meteorol. Appl. (to be published).
[CrossRef]

Ingmann, P.

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

Ishida, H.

H. Ishida, T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, “Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison,” J. Appl. Meteorol. Climatol. (to be published).

H. Ishida and T. Y. Nakajima, “Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager,” J. Geophys. Res. 114, D07206 (2009).
[CrossRef]

Kästner, M.

K. T. Kriebel, G. Gesell, M. Kästner, and H. Mannstein, “The cloud analysis tool APOLLO: improvements and validations,” Int. J. Remote Sens. 24, 2389–2408 (2003).
[CrossRef]

Kaufman, Y. J.

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Kidwell, K. B.

K. B. Kidwell, “NOAA polar orbiter data (POD) user’s guide,” in NOAA Satellite and Information Service, National Environmental Satellite, Data and Information Service (NESDIS), http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/index.htm (1998).
[PubMed]

Kikuchi, N.

H. Ishida, T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, “Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison,” J. Appl. Meteorol. Climatol. (to be published).

Kimura, T.

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

King, M. D.

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Kishino, M.

Kriebel, K. T.

K. T. Kriebel, G. Gesell, M. Kästner, and H. Mannstein, “The cloud analysis tool APOLLO: improvements and validations,” Int. J. Remote Sens. 24, 2389–2408 (2003).
[CrossRef]

Kuji, M.

Kumagai, H.

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

Lefebvre, A.

R. V. Gelsthorpe, A. Heliere, A. Lefebvre, J. Lemanczyk, E. Mateu, and K. Wallace, “EarthCARE and its payload,” Proc. SPIE 7152, 715207 (2008).
[CrossRef]

Leibrandt, L.

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

Lemanczyk, J.

R. V. Gelsthorpe, A. Heliere, A. Lefebvre, J. Lemanczyk, E. Mateu, and K. Wallace, “EarthCARE and its payload,” Proc. SPIE 7152, 715207 (2008).
[CrossRef]

Lin, C.-C.

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

Maksyutov, S.

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

Mannstein, H.

K. T. Kriebel, G. Gesell, M. Kästner, and H. Mannstein, “The cloud analysis tool APOLLO: improvements and validations,” Int. J. Remote Sens. 24, 2389–2408 (2003).
[CrossRef]

Mateu, E.

R. V. Gelsthorpe, A. Heliere, A. Lefebvre, J. Lemanczyk, E. Mateu, and K. Wallace, “EarthCARE and its payload,” Proc. SPIE 7152, 715207 (2008).
[CrossRef]

McClain, E. P.

L. L. Stowe, P. A. Davis, and E. P. McClain, “Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm for the advanced very high resolution radiometer,” J. Atmos. Ocean. Technol. 16, 656–681 (1999).
[CrossRef]

Menzel, P.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Menzel, W. P.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Moeller, C.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Moeller, C. C.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
[CrossRef]

Nakajima, M.

Nakajima, T.

Nakajima, T. Y.

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, and M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[CrossRef]

H. Ishida, T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, “Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison,” J. Appl. Meteorol. Climatol. (to be published).

H. Ishida and T. Y. Nakajima, “Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager,” J. Geophys. Res. 114, D07206 (2009).
[CrossRef]

Ota, Y.

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

Riggs, G.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Saunders, R.

J. Hocking, P. N. Francis, and R. Saunders, “Cloud detection in Meteosat Second Generation imagery at the Met Office,” Meteorol. Appl. (to be published).
[CrossRef]

Schaaf, C.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Shimoda, H.

H. Shimoda, “GCOM missions,” Proc. SPIE 6407, 640708(2006).
[CrossRef]

Silverstrin, P.

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

Solomon, S.

S. Solomon, Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, 2007).

Stowe, L. L.

L. L. Stowe, P. A. Davis, and E. P. McClain, “Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm for the advanced very high resolution radiometer,” J. Atmos. Ocean. Technol. 16, 656–681 (1999).
[CrossRef]

Strabal, K.

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

Strabala, K. I.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
[CrossRef]

Tanaka, T.

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

Tanre, D.

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Uchiyama, A.

Wallace, K.

R. V. Gelsthorpe, A. Heliere, A. Lefebvre, J. Lemanczyk, E. Mateu, and K. Wallace, “EarthCARE and its payload,” Proc. SPIE 7152, 715207 (2008).
[CrossRef]

Watanabe, H.

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

H. Ishida, T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, “Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison,” J. Appl. Meteorol. Climatol. (to be published).

Yokota, T.

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

H. Ishida, T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, “Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison,” J. Appl. Meteorol. Climatol. (to be published).

Yoshida, Y.

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

Appl. Opt.

IEEE Trans. Geosci. Remote Sens.

A. V. Di Vittorio and W. J. Emery, “An automated, dynamic threshold cloud-masking algorithm for daytime AVHRR images over land,” IEEE Trans. Geosci. Remote Sens. 40, 1682–1694 (2002).
[CrossRef]

L. Gomez-Chova and G. Camps-Valls, “Cloud-screening algorithm for ENVISAT/MERIS multispectral images,” IEEE Trans. Geosci. Remote Sens. 45, 4105–4118 (2007)
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Int. J. Remote Sens.

K. T. Kriebel, G. Gesell, M. Kästner, and H. Mannstein, “The cloud analysis tool APOLLO: improvements and validations,” Int. J. Remote Sens. 24, 2389–2408 (2003).
[CrossRef]

J. Appl. Meteorol. Climatol.

H. Ishida, T. Y. Nakajima, T. Yokota, N. Kikuchi, and H. Watanabe, “Investigation of GOSAT TANSO-CAI cloud screening ability through an inter-satellite comparison,” J. Appl. Meteorol. Climatol. (to be published).

J. Atmos. Ocean. Technol.

L. L. Stowe, P. A. Davis, and E. P. McClain, “Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm for the advanced very high resolution radiometer,” J. Atmos. Ocean. Technol. 16, 656–681 (1999).
[CrossRef]

J. Geophys. Res.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103, , 32141–32157 (1998).
[CrossRef]

H. Ishida and T. Y. Nakajima, “Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager,” J. Geophys. Res. 114, D07206 (2009).
[CrossRef]

Meteorol. Appl.

J. Hocking, P. N. Francis, and R. Saunders, “Cloud detection in Meteosat Second Generation imagery at the Met Office,” Meteorol. Appl. (to be published).
[CrossRef]

Proc. SPIE

S. A. Ackerman and Richard A. Frey, “GLI/MODIS cloud mask results, comparisons, and validation,” Proc. SPIE 5652, 17–21 (2004).
[CrossRef]

H. Shimoda, “GCOM missions,” Proc. SPIE 6407, 640708(2006).
[CrossRef]

J.-L. Bezy, L. Leibrandt, A. Heliere, P. Silverstrin, C.-C. Lin, P. Ingmann, T. Kimura, and H. Kumagai, “The ESA Earth Explorer EarthCARE mission,” Proc. SPIE 5882, 58820F(2005).
[CrossRef]

R. V. Gelsthorpe, A. Heliere, A. Lefebvre, J. Lemanczyk, E. Mateu, and K. Wallace, “EarthCARE and its payload,” Proc. SPIE 7152, 715207 (2008).
[CrossRef]

Sola

T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sola 5, 160–163 (2009).
[CrossRef]

Other

S. Solomon, Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, 2007).

S. Ackerman, K. Strabal, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, and G. Riggs, “Discriminationg clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35),” http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html (1997).

K. B. Kidwell, “NOAA polar orbiter data (POD) user’s guide,” in NOAA Satellite and Information Service, National Environmental Satellite, Data and Information Service (NESDIS), http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/index.htm (1998).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Conceptual illustration of CCL for the (a) one- and (b)  two-threshold tests.

Fig. 2
Fig. 2

Specific target areas for investigating CCIP. Area 1a (Pacific Ocean, without Sun glint), Area 1b (Pacific Ocean, Sun glint), Area 2 (the Sahara), Area 3 (the Amazon), Area 4 (Australia), and Area 5 (Greenland).

Fig. 3
Fig. 3

Ratio of N nb , N cr , and N cd over the Pacific Ocean without Sun glint (Area 1a) in (a) January, (b) April, (c) July, and (d) October, 2006, for “SGLI,” “MSI,” “AVHRR,” “CAI,” and “2BI.” N nb , N cr , and N cd indicate the number of pixels that have no shift ( | Q d | < 0.1 ), clear shift ( Q d > 0.1 ), and cloudy shift ( Q d < 0.1 ), respectively. N nb and N cr are not always error but simply bias; in other words, they are the characteristics of the imagers.

Fig. 4
Fig. 4

Ratio of N nb , N cr , and N cd over the Pacific Ocean with Sun glint (Area 1b). (See the caption of Fig. 3 for full experimental details.)

Fig. 5
Fig. 5

(a) MODIS RGB composite image over Pacific Ocean, without Sun glint (Area 1a), (b-1) distribution of Q d for “CAI” and (b-2) corresponding frequency of Q d , and (c) distribution of brightness temperature of the 11 μm band. Images in (a), (b-1), (b-2), and (c) were taken by MODIS on October 8, 2006. Latitude and longitude of the northwestern (NW) and southeastern (SE) corners are ( 38 N , 147 W ) and ( 16 N , 126 W ), respectively (Area 1a). (d) Pacific Ocean with Sun glint (Area 1b) and (e-1) distribution of Q d for “CAI” and (e-2) corresponding frequency of Q d . Images in (d) and (e-1), (e-2) were taken by MODIS on 18 July 2006. The NW and SE corners of the image are ( 34 N , 124 W ) and ( 13 N , 105 W ), respectively (Area 1b).

Fig. 6
Fig. 6

Ratio of N nb , N cr , and N cd over the Sahara (Area 2). (See the caption of Fig. 3 for full experimental details.)

Fig. 7
Fig. 7

(a) MODIS RGB composite image over the Sahara (Area 2), (b-1) distribution of Q d for “AVHRR” and (b-2) corresponding frequency of Q d , and (c) distribution of the brightness temperature of the 11 μm band. Images in (a), (b-1), (b-2), and (c) were taken by MODIS on January 1, 2006. Images in (d), (e-1), (e-2), and (f) are similar to those in (a), (b-1), (b-2), and (c), but were taken on 5 July 2006. The NW and SE corners of the images are ( 40 N , 8 W ) and ( 19 N , 11 E ), respectively (Area 2).

Fig. 8
Fig. 8

Ratio of N nb , N cr , and N cd over the Amazon (Area 3). (See the caption of Fig. 3 for full experimental details.)

Fig. 9
Fig. 9

(a) MODIS RGB composite image over the Amazon, distribution of the CCL Q for (b-1) MODIS and (b-2) “MSI,” and (c-1) distribution of Q d for “MSI” and (c-2) corresponding frequency of Q d . Images were taken by MODIS on 20 April 2006. The NW and SE corners of the images are ( 10 N , 79 W ) and ( 11 S , 59 W ), respectively (Area 3).

Fig. 10
Fig. 10

Ratio of N nb , N cr , and N cd over Australia (Area 4). (See the caption of Fig. 3 for full experimental details.)

Fig. 11
Fig. 11

(a) MODIS RGB composite image over Australia (Area 4), and (b-1) distribution of Q d for “MSI” and (b-2) corresponding frequency of Q d . Images were taken by MODIS on 6 January 2006. The NW and SE corners of the images are ( 12 S , 126 E ) and ( 34 S , 144 E ), respectively (Area 4).

Fig. 12
Fig. 12

Ratio of N nb , N cr , and N cd over Greenland (Area 5). (See the caption of Fig. 3 for full experimental details.)

Fig. 13
Fig. 13

(a) MODIS RGB composite image over Greenland (Area 5), distribution of the CCL Q for (b-1) MODIS and (b-2) “MSI,” and (c-1) distribution of Q d for “MSI” and (c-2) corresponding frequency of Q d . Images were taken by MODIS on 10 July 2006. The NW and SE corners of the images are ( 80 N , 65 W ) and ( 56 N , 20 W ), respectively (Area 5).

Fig. 14
Fig. 14

Ratio of N nb , N cr , and N cd of CDI for (a) January, (b) April, (c) July, and (d) October. No data were used for Greenland in January because of the reduced sunlight during this month.

Tables (8)

Tables Icon

Table 1 MODIS Band Specifications

Tables Icon

Table 2 SGLI Band Specifications a

Tables Icon

Table 3 MSI Band Specifications

Tables Icon

Table 4 AVHRR Model 2 Band Specifications

Tables Icon

Table 5 CAI Band Specifications

Tables Icon

Table 6 Individual Tests and Thresholds

Tables Icon

Table 7 Executable Individual Tests for Each Imager a

Tables Icon

Table 8 Number of Scenes Used in the Experiments and Remarkable Bands in the Discussions

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Q 1 = 1 ( 1 q 11 ) ( 1 q 12 ) ( 1 q 13 ) ( 1 q 1 n ) n ,
Q 2 = q 21 q 22 q 23 q 2 n n ,
Q final = Q 1 · Q 2 2 .
Q g = min [ q 1 , q 2 , q 3 , , q n ] ,
Q final = Q 1 · Q 2 · Q 3 · Q 4 · Q 5 5 .
Q d = Q Other Q MODIS ,
| Q d | < 0.1 ,     no shift     ( N nb ) ;
Q d > 0.1 ,     clear shift     ( N cr ) ;
Q d < 0.1 ,     cloudly shift   ( N cd ) .

Metrics