Abstract

Detection of carbon monoxide (CO) in combustion gases by tunable diode laser spectrometry is often hampered by spectral interferences from H2O and CO2. A methodology for assessment of CO in hot, humid media using telecommunication distributed feedback lasers is presented. By addressing the R14 line at 6395.4cm1, and by using a dual-species-fitting technique that incorporates the fitting of both a previously measured water background reference spectrum and a 2f-wavelength modulation lineshape function, percent-level concentrations of CO can be detected in media with tens of percent of water (cH2O40%) at T1000°C with an accuracy of a few percent by the use of a single reference water spectrum for background correction.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Saxena, and L. A. Thomas, “An equilibrium-model for predicting flue-gas composition of an incinerator,” Int. J. Energy Res. 19, 317–327 (1995).
    [CrossRef]
  2. R. Wischnewski, L. Ratschow, E. U. Hartge, and J. Werthe, “3D-simulation of concentration distributions inside large-scale circulating fluidized bed combustors,” in 20th International Conference on Fluidized Bed CombustionG.Yue, H.Zhang, C.Zhao, and Z.Luo eds. (Springer-Verlag, 2010), pp. 774–779.
  3. Alpha Online, Environmed Research, Inc., Sechelt, B.C., Canada, Indoor Air Quality—Carbon monoxide (CO), http://www.nutramed.com/environment/monoxide.htm, retrieved (11 October 2010).
  4. Wikipedia, the free encyclopedia, carbon monoxide, http://en.wikipedia.org/wiki/carbon_monoxide, retrieved (13 October 2010).
  5. A. Faiz, C. S. Weaver, and M. P. Walsh, Air Pollution from Motor Vehicles (The World Bank, 1996).
    [CrossRef]
  6. S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
  7. Y. Deguchi, M. Noda, and M. Abe, “Improvement of combustion control through real-time measurement of O2 and CO concentrations in incinerators using diode laser absorption spectroscopy,” Proc. Combust. Inst. 29, 147–153 (2002).
    [CrossRef]
  8. M. G. Allen, “Diode laser absorption sensors for gas—dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  9. A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard ed. (Blackwell, 2006), pp. 72–146.
    [CrossRef]
  10. M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
    [CrossRef]
  11. R. K. Hanson, P. A. Kuntz, and C. H. Kruger, “High-resolution spectroscopy of combustion gases using a tunable IR diode-laser,” Appl. Opt. 16, 2045–2048 (1977).
    [CrossRef] [PubMed]
  12. S. M. Schoenung and R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. and Tech. 24, 227–237 (1980).
    [CrossRef]
  13. D. T. Cassidy and L. J. Bonnell, “Trace gas-detection with short-external-cavity InGaAsP diode-laser transmitter modules operating at 1.58 mm,” Appl. Opt. 27, 2688–2693 (1988).
    [CrossRef] [PubMed]
  14. J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, and P. Hassanzadeh, “Tunable diode-laser measurement of carbon-monoxide concentration and temperature in a laminar methane air diffusion flame,” Appl. Opt. 32, 6082–6089(1993).
    [CrossRef]
  15. R. R. Skaggs and J. H. Miller, “A study of carbon-monoxide in a series of laminar ethylene air diffusion flames using tunable diode-laser absorption-spectroscopy,” Comb. Flame 100, 430–439 (1995).
    [CrossRef]
  16. Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in-situ laser measurements of nonequilibrium carbon-monoxide in lean-premixed natural-gas combustion,” Comb. Flame 100, 395–406 (1995).
    [CrossRef]
  17. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  18. B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512(1999).
    [CrossRef]
  19. M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000).
    [CrossRef]
  20. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
    [CrossRef]
  21. J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
    [CrossRef]
  22. J. J. Nikkari, J. M. Di Iorio, and M. J. Thomson, “In situ combustion measurements of CO, H2O, and temperature with a 1.58 mm diode laser and two-tone frequency modulation,” Appl. Opt. 41, 446–452 (2002).
    [CrossRef] [PubMed]
  23. H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
    [CrossRef] [PubMed]
  24. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
    [CrossRef]
  25. Y. Gerard, R. J. Holdsworth, and P. A. Martin, “Multispecies in situ monitoring of a static internal combustion engine by near-infrared diode laser sensors,” Appl. Opt. 46, 3937–3945(2007).
    [CrossRef] [PubMed]
  26. A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007).
    [CrossRef]
  27. W. Wojcik, P. Komada, V. Firago, and I. Manak, “Measurement of CO concentration utilizing TDLAS in near IR range,” Przeglad Elektrotechniczny 84, 238–240 (2008).
  28. J. Reid and D. Labrie, “2nd-harmonic detection with tunable diode-lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  29. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
    [CrossRef]
  30. R. K. Hanson and P. K. Falcone, “Temperature-measurement technique for high-temperature gases using a tunable diode-laser,” Appl. Opt. 17, 2477–2480 (1978).
    [CrossRef] [PubMed]
  31. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003), pp. 445–510.
  32. J. Ropcke, G. Lombardi, A. Rousseau, and P. B. Davies, “Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review,” Plasma Sources Sci. Technol. 15, S148–S168 (2006).
    [CrossRef]
  33. A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
    [CrossRef]
  34. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
    [CrossRef]
  35. J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
    [CrossRef]
  36. C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
    [CrossRef]
  37. F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
    [CrossRef]
  38. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
    [CrossRef]
  39. A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
    [CrossRef]
  40. Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007).
    [CrossRef]
  41. D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
    [CrossRef]
  42. X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 mm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
    [CrossRef]
  43. J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009).
    [CrossRef]
  44. S. Civis, J. Cihelka, and I. Matulkova, “Infrared diode laser spectroscopy,” Opto-Electron. Rev. 18, 408–420(2010).
    [CrossRef]
  45. P. Scott, “Mid-infrared lasers,” Nat. Photon. 4, 576–577(2010).
    [CrossRef]
  46. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
    [CrossRef]
  47. T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
    [CrossRef]
  48. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 mm,” Appl. Opt. 40, 821–828 (2001).
    [CrossRef]
  49. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
    [CrossRef]
  50. J. Vanderover and M. A. Oehlschlaeger, “A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K,” Appl. Phys. B 99, 353–362 (2010).
    [CrossRef]
  51. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
    [CrossRef]
  52. B. L. Upschulte and M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 mm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
    [CrossRef]
  53. The structure of a spectrum can be affected by the presence of various concomitant constituents by different types of broadening processes. It has been found that H2O is a species that broadens molecular lines significantly. Therefore, the structure of a spectrum, either from the analyte or a background constituent, can depend on the concentration of water in the gas.
  54. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
    [CrossRef]
  55. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511(2004).
    [CrossRef]
  56. G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
    [CrossRef]
  57. J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
    [CrossRef]
  58. L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995).
    [CrossRef]
  59. Because the number density is related to the relative concentration of absorbers by n=cxp/kT=2.48×1019(T0/T)cxp, where k is the Boltzmann constant, T is the temperature (K), and T0 is a reference temperature here taken as 296 K, S(T) is related to S′(T) through S(T)=2.48×1019(T0/T)S′(T).
  60. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).
  61. R. R. Gamache, S. Kennedy, R. Hawkins, and L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Struct. 517, 407–425 (2000).
    [CrossRef]
  62. In order to indisputably assess the spectral interferences of H2O on CO, a concentration of CO that is above that of most normal combustion gases, namely, 7%, was used in the spectral investigations in this work.
  63. P. Kluczynski, Å. M. Lindberg, and O. Axner, “Characterization of background signals in wavelength-modulation spectrometry in terms of a Fourier based theoretical formalism,” Appl. Opt. 40, 770–782 (2001).
    [CrossRef]
  64. P. Kluczynski, Å. M. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. theory,” Appl. Opt. 40, 783–793(2001).
    [CrossRef]
  65. P. Kluczynski, Å. M. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. II. experiment,” Appl. Opt. 40, 794–805 (2001).
    [CrossRef]
  66. Instead of evaluating the ability to extract the CO signal from a combined CO and H2O spectrum taken at dissimilar temperatures using a single reference spectrum, taken at a given temperature, it was found more reliable in this study (in order to assess the degree of retrieval of the CO signal in an as accurate manner as possible) to perform the opposite study, i.e., to evaluate the capability to extract the CO signal from a combined CO and H2O spectrum taken at a specific temperature using reference spectra taken at a variety of temperatures. By measuring the combined CO and H2O spectrum at 850 °C and reference spectra in the 700–1000 °C temperature range, the influence of temperature differences between the combined spectrum and the reference spectra ranging from −150 °C to 150 °C could be investigated.
  67. Because the H2O molecule is a strong broadener, it is possible that a fluctuating water concentration can affect the structure of the spectra through broadening processes, which, in turn, would affect the possibility to adequately extract the residual CO spectrum from the combined signal.
  68. Note that the detection limits given are the maximum limits for the technique. It is possible that, for the highest temperatures, the measured detection limits are affected by fluctuations in the gas mixing and water vaporizer systems.

2010 (5)

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

S. Civis, J. Cihelka, and I. Matulkova, “Infrared diode laser spectroscopy,” Opto-Electron. Rev. 18, 408–420(2010).
[CrossRef]

P. Scott, “Mid-infrared lasers,” Nat. Photon. 4, 576–577(2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

J. Vanderover and M. A. Oehlschlaeger, “A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K,” Appl. Phys. B 99, 353–362 (2010).
[CrossRef]

2009 (4)

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 mm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009).
[CrossRef]

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

2008 (6)

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

W. Wojcik, P. Komada, V. Firago, and I. Manak, “Measurement of CO concentration utilizing TDLAS in near IR range,” Przeglad Elektrotechniczny 84, 238–240 (2008).

2007 (6)

Y. Gerard, R. J. Holdsworth, and P. A. Martin, “Multispecies in situ monitoring of a static internal combustion engine by near-infrared diode laser sensors,” Appl. Opt. 46, 3937–3945(2007).
[CrossRef] [PubMed]

A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007).
[CrossRef]

Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007).
[CrossRef]

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[CrossRef]

2006 (2)

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

J. Ropcke, G. Lombardi, A. Rousseau, and P. B. Davies, “Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review,” Plasma Sources Sci. Technol. 15, S148–S168 (2006).
[CrossRef]

2005 (1)

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
[CrossRef]

2004 (1)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511(2004).
[CrossRef]

2003 (1)

2002 (3)

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
[CrossRef]

Y. Deguchi, M. Noda, and M. Abe, “Improvement of combustion control through real-time measurement of O2 and CO concentrations in incinerators using diode laser absorption spectroscopy,” Proc. Combust. Inst. 29, 147–153 (2002).
[CrossRef]

J. J. Nikkari, J. M. Di Iorio, and M. J. Thomson, “In situ combustion measurements of CO, H2O, and temperature with a 1.58 mm diode laser and two-tone frequency modulation,” Appl. Opt. 41, 446–452 (2002).
[CrossRef] [PubMed]

2001 (5)

2000 (4)

R. R. Gamache, S. Kennedy, R. Hawkins, and L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Struct. 517, 407–425 (2000).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

1999 (2)

1998 (3)

B. L. Upschulte and M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 mm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas—dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

1997 (1)

S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).

1995 (4)

S. C. Saxena, and L. A. Thomas, “An equilibrium-model for predicting flue-gas composition of an incinerator,” Int. J. Energy Res. 19, 317–327 (1995).
[CrossRef]

R. R. Skaggs and J. H. Miller, “A study of carbon-monoxide in a series of laminar ethylene air diffusion flames using tunable diode-laser absorption-spectroscopy,” Comb. Flame 100, 430–439 (1995).
[CrossRef]

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in-situ laser measurements of nonequilibrium carbon-monoxide in lean-premixed natural-gas combustion,” Comb. Flame 100, 395–406 (1995).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995).
[CrossRef]

1993 (1)

1988 (1)

1981 (1)

J. Reid and D. Labrie, “2nd-harmonic detection with tunable diode-lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1980 (1)

S. M. Schoenung and R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. and Tech. 24, 227–237 (1980).
[CrossRef]

1978 (1)

1977 (1)

Abe, M.

Y. Deguchi, M. Noda, and M. Abe, “Improvement of combustion control through real-time measurement of O2 and CO concentrations in incinerators using diode laser absorption spectroscopy,” Proc. Combust. Inst. 29, 147–153 (2002).
[CrossRef]

Aers, G. C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009).
[CrossRef]

Ahvazi, B.

Allen, M. G.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512(1999).
[CrossRef]

B. L. Upschulte and M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 mm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas—dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Angellier, J.

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

Ase, H.

S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).

Auwera, J. Vander

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Awtry, A. R.

A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007).
[CrossRef]

Axner, O.

Baer, D. S.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 mm,” Appl. Opt. 40, 821–828 (2001).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Bakhirkin, Y. A.

F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
[CrossRef]

Baranov, A. N.

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
[CrossRef]

Barat, D.

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

Barbe, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Barrios, P. J.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009).
[CrossRef]

Benner, D. C.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Bernath, P. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Bertaux, J. L.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Birk, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Bonnell, L. J.

Boudon, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Bozem, H.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Brown, L. R.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Campargue, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Cassidy, D. T.

Champion, J. P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Chance, K.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Chao, X.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 mm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

Chassefiere, E.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Cihelka, J.

S. Civis, J. Cihelka, and I. Matulkova, “Infrared diode laser spectroscopy,” Opto-Electron. Rev. 18, 408–420(2010).
[CrossRef]

Civis, S.

S. Civis, J. Cihelka, and I. Matulkova, “Infrared diode laser spectroscopy,” Opto-Electron. Rev. 18, 408–420(2010).
[CrossRef]

Connolly, J. C.

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Coudert, L. H.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
[CrossRef]

Dana, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Davies, P. B.

J. Ropcke, G. Lombardi, A. Rousseau, and P. B. Davies, “Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review,” Plasma Sources Sci. Technol. 15, S148–S168 (2006).
[CrossRef]

Deguchi, Y.

Y. Deguchi, M. Noda, and M. Abe, “Improvement of combustion control through real-time measurement of O2 and CO concentrations in incinerators using diode laser absorption spectroscopy,” Proc. Combust. Inst. 29, 147–153 (2002).
[CrossRef]

Devi, V. M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Di Iorio, J. M.

Dibble, R. W.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in-situ laser measurements of nonequilibrium carbon-monoxide in lean-premixed natural-gas combustion,” Comb. Flame 100, 395–406 (1995).
[CrossRef]

Dikmelik, Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Diskin, G.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Durry, G.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Ebert, V.

A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007).
[CrossRef]

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
[CrossRef]

H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

Edgar, B. L.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in-situ laser measurements of nonequilibrium carbon-monoxide in lean-premixed natural-gas combustion,” Comb. Flame 100, 395–406 (1995).
[CrossRef]

Elreedy, S.

Escarra, M. D.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Faiz, A.

A. Faiz, C. S. Weaver, and M. P. Walsh, Air Pollution from Motor Vehicles (The World Bank, 1996).
[CrossRef]

Falcone, P. K.

Fally, S.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Fan, J. Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Farooq, A.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[CrossRef]

Fernholz, T.

Firago, V.

W. Wojcik, P. Komada, V. Firago, and I. Manak, “Measurement of CO concentration utilizing TDLAS in near IR range,” Przeglad Elektrotechniczny 84, 238–240 (2008).

Fischer, H.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Fisher, B. T.

A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007).
[CrossRef]

Flaud, J. M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Fleming, J. W.

A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007).
[CrossRef]

Franz, K. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Fried, A.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003), pp. 445–510.

A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard ed. (Blackwell, 2006), pp. 72–146.
[CrossRef]

Fujii, S.

S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).

Gaillard, S.

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
[CrossRef]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

R. R. Gamache, S. Kennedy, R. Hawkins, and L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Struct. 517, 407–425 (2000).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995).
[CrossRef]

Garbuzov, D. Z.

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Gerard, Y.

Glenn, D. E.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

Gmachl, C. F.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Guilet, S.

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

Gulati, A.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in-situ laser measurements of nonequilibrium carbon-monoxide in lean-premixed natural-gas combustion,” Comb. Flame 100, 395–406 (1995).
[CrossRef]

Gupta, J. A.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009).
[CrossRef]

Gurk, C.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Gustafsson, J.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Hanson, R. K.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 mm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511(2004).
[CrossRef]

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 mm,” Appl. Opt. 40, 821–828 (2001).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

S. M. Schoenung and R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. and Tech. 24, 227–237 (1980).
[CrossRef]

R. K. Hanson and P. K. Falcone, “Temperature-measurement technique for high-temperature gases using a tunable diode-laser,” Appl. Opt. 17, 2477–2480 (1978).
[CrossRef] [PubMed]

R. K. Hanson, P. A. Kuntz, and C. H. Kruger, “High-resolution spectroscopy of combustion gases using a tunable IR diode-laser,” Appl. Opt. 16, 2045–2048 (1977).
[CrossRef] [PubMed]

Harris, G. W.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Hartge, E. U.

R. Wischnewski, L. Ratschow, E. U. Hartge, and J. Werthe, “3D-simulation of concentration distributions inside large-scale circulating fluidized bed combustors,” in 20th International Conference on Fluidized Bed CombustionG.Yue, H.Zhang, C.Zhao, and Z.Luo eds. (Springer-Verlag, 2010), pp. 774–779.

Hassanzadeh, P.

Hawkins, R.

R. R. Gamache, S. Kennedy, R. Hawkins, and L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Struct. 517, 407–425 (2000).
[CrossRef]

Hoffman, A. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Holdsworth, R. J.

Ikeda, Y.

Jacquemart, D.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Jeffries, J. B.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 mm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511(2004).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Kennedy, S.

R. R. Gamache, S. Kennedy, R. Hawkins, and L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Struct. 517, 407–425 (2000).
[CrossRef]

Khurgin, J. B.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Kim, S.

Kindle, H. S.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

Kleiner, I.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Kluczynski, P.

Kolb, T.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
[CrossRef]

Komada, P.

W. Wojcik, P. Komada, V. Firago, and I. Manak, “Measurement of CO concentration utilizing TDLAS in near IR range,” Przeglad Elektrotechniczny 84, 238–240 (2008).

Konigstedt, R.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Korablev, O.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Kosterev, A. A.

F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
[CrossRef]

Kruger, C. H.

Kuntz, P. A.

Labrie, D.

J. Reid and D. Labrie, “2nd-harmonic detection with tunable diode-lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lackner, M.

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[CrossRef]

Lacome, N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Lafferty, W. J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Lapointe, J.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009).
[CrossRef]

Lathdavong, L.

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

Le Barbu, T.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Le Gratiet, L.

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

Lelieveld, J.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Li, A. Z.

Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007).
[CrossRef]

Li, H.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[CrossRef]

Lindberg, A. M.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Lindberg, Å. M.

Liu, J. T. C.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511(2004).
[CrossRef]

Liu, P. Q.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Liu, S.

Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007).
[CrossRef]

Liu, X.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

Lombardi, G.

J. Ropcke, G. Lombardi, A. Rousseau, and P. B. Davies, “Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review,” Plasma Sources Sci. Technol. 15, S148–S168 (2006).
[CrossRef]

Lundqvist, S.

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

Maiorov, M.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

Manak, I.

W. Wojcik, P. Komada, V. Firago, and I. Manak, “Measurement of CO concentration utilizing TDLAS in near IR range,” Przeglad Elektrotechniczny 84, 238–240 (2008).

Mandin, J. Y.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Martin, P. A.

Martinez, A.

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

Massie, S. T.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Matulkova, I.

S. Civis, J. Cihelka, and I. Matulkova, “Infrared diode laser spectroscopy,” Opto-Electron. Rev. 18, 408–420(2010).
[CrossRef]

McCann, A.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995).
[CrossRef]

McCurdy, M. R.

F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
[CrossRef]

McGovern, R. M.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

McManus, J. B.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Mikhailenko, S. N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Miller, C. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Miller, J. H.

R. R. Skaggs and J. H. Miller, “A study of carbon-monoxide in a series of laminar ethylene air diffusion flames using tunable diode-laser absorption-spectroscopy,” Comb. Flame 100, 430–439 (1995).
[CrossRef]

J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, and P. Hassanzadeh, “Tunable diode-laser measurement of carbon-monoxide concentration and temperature in a laminar methane air diffusion flame,” Appl. Opt. 32, 6082–6089(1993).
[CrossRef]

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Moazzen-Ahmadi, N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Moffatt, R. A.

A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007).
[CrossRef]

Mulhall, P. A.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Nelson, D. D.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

Nguyen, Q. V.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in-situ laser measurements of nonequilibrium carbon-monoxide in lean-premixed natural-gas combustion,” Comb. Flame 100, 395–406 (1995).
[CrossRef]

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Nikkari, J. J.

Noda, M.

Y. Deguchi, M. Noda, and M. Abe, “Improvement of combustion control through real-time measurement of O2 and CO concentrations in incinerators using diode laser absorption spectroscopy,” Proc. Combust. Inst. 29, 147–153 (2002).
[CrossRef]

Nogami, T.

S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).

Oehlschlaeger, M. A.

J. Vanderover and M. A. Oehlschlaeger, “A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K,” Appl. Phys. B 99, 353–362 (2010).
[CrossRef]

Orphal, J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Parchatka, U.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Perona, A.

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
[CrossRef]

Perrin, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Podolske, J.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

Predoi-Cross, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Ramdane, A.

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

Rana, M.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

Ratschow, L.

R. Wischnewski, L. Ratschow, E. U. Hartge, and J. Werthe, “3D-simulation of concentration distributions inside large-scale circulating fluidized bed combustors,” in 20th International Conference on Fluidized Bed CombustionG.Yue, H.Zhang, C.Zhao, and Z.Luo eds. (Springer-Verlag, 2010), pp. 774–779.

Reid, J.

J. Reid and D. Labrie, “2nd-harmonic detection with tunable diode-lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Richter, D.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003), pp. 445–510.

A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard ed. (Blackwell, 2006), pp. 72–146.
[CrossRef]

Rieker, G. B.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Ropcke, J.

J. Ropcke, G. Lombardi, A. Rousseau, and P. B. Davies, “Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review,” Plasma Sources Sci. Technol. 15, S148–S168 (2006).
[CrossRef]

Rotger, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

R. R. Gamache, S. Kennedy, R. Hawkins, and L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Struct. 517, 407–425 (2000).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995).
[CrossRef]

Rouillard, Y.

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
[CrossRef]

Rousseau, A.

J. Ropcke, G. Lombardi, A. Rousseau, and P. B. Davies, “Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review,” Plasma Sources Sci. Technol. 15, S148–S168 (2006).
[CrossRef]

Sachse, G.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

Sanders, S. T.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 mm,” Appl. Opt. 40, 821–828 (2001).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

Saxena, S. C.

S. C. Saxena, and L. A. Thomas, “An equilibrium-model for predicting flue-gas composition of an incinerator,” Int. J. Energy Res. 19, 317–327 (1995).
[CrossRef]

Schiller, C. L.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Schoenung, S. M.

S. M. Schoenung and R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. and Tech. 24, 227–237 (1980).
[CrossRef]

Schroeder, J. W.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995).
[CrossRef]

Scott, P.

P. Scott, “Mid-infrared lasers,” Nat. Photon. 4, 576–577(2010).
[CrossRef]

Seifert, H.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
[CrossRef]

Shao, J.

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

Shirai, M.

S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).

Shorter, J. H.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

Simeckova, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Skaggs, R. R.

R. R. Skaggs and J. H. Miller, “A study of carbon-monoxide in a series of laminar ethylene air diffusion flames using tunable diode-laser absorption-spectroscopy,” Comb. Flame 100, 430–439 (1995).
[CrossRef]

Slate, T.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

So, S. G.

F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
[CrossRef]

Sonnenfroh, D. M.

Storey, C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009).
[CrossRef]

Strauch, P.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
[CrossRef]

Sung, K.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Teichert, H.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
[CrossRef]

H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Thomas, L. A.

S. C. Saxena, and L. A. Thomas, “An equilibrium-model for predicting flue-gas composition of an incinerator,” Int. J. Energy Res. 19, 317–327 (1995).
[CrossRef]

Thomson, M. J.

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Tittel, F. K.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003), pp. 445–510.

F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
[CrossRef]

Tomiyama, S.

S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).

Toth, R. A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Upschulte, B. L.

B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512(1999).
[CrossRef]

B. L. Upschulte and M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 mm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

Vandaele, A. C.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Vanderover, J.

J. Vanderover and M. A. Oehlschlaeger, “A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K,” Appl. Phys. B 99, 353–362 (2010).
[CrossRef]

Vicet, A.

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
[CrossRef]

Vinogradov, I.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Walega, J. G.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

Walsh, M. P.

A. Faiz, C. S. Weaver, and M. P. Walsh, Air Pollution from Motor Vehicles (The World Bank, 1996).
[CrossRef]

Wang, J.

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

Wang, X. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

Wattson, R. B.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995).
[CrossRef]

Weaver, C. S.

A. Faiz, C. S. Weaver, and M. P. Walsh, Air Pollution from Motor Vehicles (The World Bank, 1996).
[CrossRef]

Webber, M. E.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 mm,” Appl. Opt. 40, 821–828 (2001).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

Wehe, S. D.

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

Weibring, P.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

Werthe, J.

R. Wischnewski, L. Ratschow, E. U. Hartge, and J. Werthe, “3D-simulation of concentration distributions inside large-scale circulating fluidized bed combustors,” in 20th International Conference on Fluidized Bed CombustionG.Yue, H.Zhang, C.Zhao, and Z.Luo eds. (Springer-Verlag, 2010), pp. 774–779.

Wischnewski, R.

R. Wischnewski, L. Ratschow, E. U. Hartge, and J. Werthe, “3D-simulation of concentration distributions inside large-scale circulating fluidized bed combustors,” in 20th International Conference on Fluidized Bed CombustionG.Yue, H.Zhang, C.Zhao, and Z.Luo eds. (Springer-Verlag, 2010), pp. 774–779.

Wojcik, W.

W. Wojcik, P. Komada, V. Firago, and I. Manak, “Measurement of CO concentration utilizing TDLAS in near IR range,” Przeglad Elektrotechniczny 84, 238–240 (2008).

Woldu, F.

Wolfrum, J.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
[CrossRef]

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
[CrossRef]

Yarekha, D. A.

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
[CrossRef]

Yokoyama, T.

S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).

Zahniser, M. S.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

Zhang, X. J.

Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007).
[CrossRef]

Zhang, Y. G.

Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007).
[CrossRef]

Zhu, X. R.

Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007).
[CrossRef]

Adv. Space Res. (1)

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006).
[CrossRef]

Appl. Opt. (14)

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 mm,” Appl. Opt. 40, 821–828 (2001).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

P. Kluczynski, Å. M. Lindberg, and O. Axner, “Characterization of background signals in wavelength-modulation spectrometry in terms of a Fourier based theoretical formalism,” Appl. Opt. 40, 770–782 (2001).
[CrossRef]

P. Kluczynski, Å. M. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. theory,” Appl. Opt. 40, 783–793(2001).
[CrossRef]

P. Kluczynski, Å. M. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. II. experiment,” Appl. Opt. 40, 794–805 (2001).
[CrossRef]

D. T. Cassidy and L. J. Bonnell, “Trace gas-detection with short-external-cavity InGaAsP diode-laser transmitter modules operating at 1.58 mm,” Appl. Opt. 27, 2688–2693 (1988).
[CrossRef] [PubMed]

J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, and P. Hassanzadeh, “Tunable diode-laser measurement of carbon-monoxide concentration and temperature in a laminar methane air diffusion flame,” Appl. Opt. 32, 6082–6089(1993).
[CrossRef]

R. K. Hanson, P. A. Kuntz, and C. H. Kruger, “High-resolution spectroscopy of combustion gases using a tunable IR diode-laser,” Appl. Opt. 16, 2045–2048 (1977).
[CrossRef] [PubMed]

B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512(1999).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

J. J. Nikkari, J. M. Di Iorio, and M. J. Thomson, “In situ combustion measurements of CO, H2O, and temperature with a 1.58 mm diode laser and two-tone frequency modulation,” Appl. Opt. 41, 446–452 (2002).
[CrossRef] [PubMed]

H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

Y. Gerard, R. J. Holdsworth, and P. A. Martin, “Multispecies in situ monitoring of a static internal combustion engine by near-infrared diode laser sensors,” Appl. Opt. 46, 3937–3945(2007).
[CrossRef] [PubMed]

R. K. Hanson and P. K. Falcone, “Temperature-measurement technique for high-temperature gases using a tunable diode-laser,” Appl. Opt. 17, 2477–2480 (1978).
[CrossRef] [PubMed]

Appl. Phys. B (10)

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

J. Reid and D. Labrie, “2nd-harmonic detection with tunable diode-lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511(2004).
[CrossRef]

J. Vanderover and M. A. Oehlschlaeger, “A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K,” Appl. Phys. B 99, 353–362 (2010).
[CrossRef]

D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009).
[CrossRef]

Chin. Phys. Lett. (1)

Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007).
[CrossRef]

Comb. Flame (2)

R. R. Skaggs and J. H. Miller, “A study of carbon-monoxide in a series of laminar ethylene air diffusion flames using tunable diode-laser absorption-spectroscopy,” Comb. Flame 100, 430–439 (1995).
[CrossRef]

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in-situ laser measurements of nonequilibrium carbon-monoxide in lean-premixed natural-gas combustion,” Comb. Flame 100, 395–406 (1995).
[CrossRef]

Combust. Sci. and Tech. (1)

S. M. Schoenung and R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. and Tech. 24, 227–237 (1980).
[CrossRef]

Int. J. Energy Res. (1)

S. C. Saxena, and L. A. Thomas, “An equilibrium-model for predicting flue-gas composition of an incinerator,” Int. J. Energy Res. 19, 317–327 (1995).
[CrossRef]

J. Mol. Struct. (1)

R. R. Gamache, S. Kennedy, R. Hawkins, and L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Struct. 517, 407–425 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

B. L. Upschulte and M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 mm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

JSME Int. J. Ser. C (1)

S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).

Meas. Sci. Technol. (5)

M. G. Allen, “Diode laser absorption sensors for gas—dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 mm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

Nat. Photon. (2)

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010).
[CrossRef]

P. Scott, “Mid-infrared lasers,” Nat. Photon. 4, 576–577(2010).
[CrossRef]

Opto-Electron. Rev. (1)

S. Civis, J. Cihelka, and I. Matulkova, “Infrared diode laser spectroscopy,” Opto-Electron. Rev. 18, 408–420(2010).
[CrossRef]

Plasma Sources Sci. Technol. (1)

J. Ropcke, G. Lombardi, A. Rousseau, and P. B. Davies, “Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review,” Plasma Sources Sci. Technol. 15, S148–S168 (2006).
[CrossRef]

Proc. Combust. Inst. (4)

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005).
[CrossRef]

A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

Y. Deguchi, M. Noda, and M. Abe, “Improvement of combustion control through real-time measurement of O2 and CO concentrations in incinerators using diode laser absorption spectroscopy,” Proc. Combust. Inst. 29, 147–153 (2002).
[CrossRef]

Proc. SPIE (1)

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995).
[CrossRef]

Przeglad Elektrotechniczny (1)

W. Wojcik, P. Komada, V. Firago, and I. Manak, “Measurement of CO concentration utilizing TDLAS in near IR range,” Przeglad Elektrotechniczny 84, 238–240 (2008).

Rev. Chem. Eng. (1)

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[CrossRef]

Spectrochim. Acta Part A (1)

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002).
[CrossRef]

Spectrochim. Acta Part B (1)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Other (14)

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003), pp. 445–510.

F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63.
[CrossRef]

A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard ed. (Blackwell, 2006), pp. 72–146.
[CrossRef]

R. Wischnewski, L. Ratschow, E. U. Hartge, and J. Werthe, “3D-simulation of concentration distributions inside large-scale circulating fluidized bed combustors,” in 20th International Conference on Fluidized Bed CombustionG.Yue, H.Zhang, C.Zhao, and Z.Luo eds. (Springer-Verlag, 2010), pp. 774–779.

Alpha Online, Environmed Research, Inc., Sechelt, B.C., Canada, Indoor Air Quality—Carbon monoxide (CO), http://www.nutramed.com/environment/monoxide.htm, retrieved (11 October 2010).

Wikipedia, the free encyclopedia, carbon monoxide, http://en.wikipedia.org/wiki/carbon_monoxide, retrieved (13 October 2010).

A. Faiz, C. S. Weaver, and M. P. Walsh, Air Pollution from Motor Vehicles (The World Bank, 1996).
[CrossRef]

The structure of a spectrum can be affected by the presence of various concomitant constituents by different types of broadening processes. It has been found that H2O is a species that broadens molecular lines significantly. Therefore, the structure of a spectrum, either from the analyte or a background constituent, can depend on the concentration of water in the gas.

Because the number density is related to the relative concentration of absorbers by n=cxp/kT=2.48×1019(T0/T)cxp, where k is the Boltzmann constant, T is the temperature (K), and T0 is a reference temperature here taken as 296 K, S(T) is related to S′(T) through S(T)=2.48×1019(T0/T)S′(T).

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Instead of evaluating the ability to extract the CO signal from a combined CO and H2O spectrum taken at dissimilar temperatures using a single reference spectrum, taken at a given temperature, it was found more reliable in this study (in order to assess the degree of retrieval of the CO signal in an as accurate manner as possible) to perform the opposite study, i.e., to evaluate the capability to extract the CO signal from a combined CO and H2O spectrum taken at a specific temperature using reference spectra taken at a variety of temperatures. By measuring the combined CO and H2O spectrum at 850 °C and reference spectra in the 700–1000 °C temperature range, the influence of temperature differences between the combined spectrum and the reference spectra ranging from −150 °C to 150 °C could be investigated.

Because the H2O molecule is a strong broadener, it is possible that a fluctuating water concentration can affect the structure of the spectra through broadening processes, which, in turn, would affect the possibility to adequately extract the residual CO spectrum from the combined signal.

Note that the detection limits given are the maximum limits for the technique. It is possible that, for the highest temperatures, the measured detection limits are affected by fluctuations in the gas mixing and water vaporizer systems.

In order to indisputably assess the spectral interferences of H2O on CO, a concentration of CO that is above that of most normal combustion gases, namely, 7%, was used in the spectral investigations in this work.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Line strength of the absorption lines of CO [in units of cm 1 / ( molecules   cm 2 ) ] in the spectral range from 6000 to 6450 cm 1 at room temperature ( 23 ° C , i.e., 296 K , panel A) and at an elevated temperature ( 1000 ° C , i.e., 1273 K , panel B). The two groups of transitions in panel A (in the 6250 6350 cm 1 and the 6350 6420 cm 1 regions) represent the P and R branches of the ν = 0 ν = 3 overtone band, respectively. The additional groups of transitions in panel B (in the 6000 6267 cm 1 and the 6275 6340 cm 1 regions) originate from the P and R branches of the first and second hot bands, respectively. Data were taken from the HITEMP database [58].

Fig. 2
Fig. 2

Integrated (gas) line strength for the R12–R27 transitions in CO as a function of temperature (with R12 and R27 being the strongest and weakest at room temperature, respectively).

Fig. 3
Fig. 3

Simulated absorption spectra at 1000 ° C from: A, 10% of CO; B, 30% of H 2 O ; and C, 10% of CO 2 —all in N 2 at a total pressure of 1 atm and for an interaction length of 1 m .

Fig. 4
Fig. 4

A–F, Simulated spectra from 10% of CO and 30% of H 2 O (black solid curves), 30% of H 2 O (blue dashed curves), and 10% of CO (red dashed–dotted curves), all in N 2 , at a temperature of 1000 ° C , detected around the R13, R14, R18, R20, R22, and R24 transitions, respectively.

Fig. 5
Fig. 5

Schematic illustration of the experimental setup. Water vapor was generated in an evaporator into which calibrated flows of distilled water, N 2 , and CO were flushed. The gas lines between the evaporator and the furnace were held at an elevated temperature ( > 200 ° C ) to avoid condensation, measured by a thermocouple (pt100). To reduce the flow of gas in the heated cell, some of the gas mixture was shunted off prior to the cell. Collimated laser light was sent through the fused silica cell in the furnace onto a detector.

Fig. 6
Fig. 6

2 f -wm-signals from the R13, R14, R18, and R24 transitions from 7% of CO in 30% H 2 O (black solid curve) and from 30% H 2 O (blue dashed–dotted curve), represented by the four columns of panels, respectively, measured at 200 ° C , 400 ° C , 600 ° C , 800 ° C , and 1000 ° C , corresponding to the five rows, respectively.

Fig. 7
Fig. 7

2 f -wm-signals from 7% CO and 30% H 2 O in N 2 and 30% H 2 O in N 2 , around the R13, R14, R18, and R24 transitions, represented by the eight groups of panels, respectively, at 800 ° C and 1000 ° C , left and right columns, respectively. The first row of panels in each group (A1, A4, B1, B4, etc.): black solid curves, “combined CO and H 2 O spectra,” i.e., measured 2 f -wm-TDLAS spectra from 7% CO and 30% H 2 O in N 2 ; green dashed–dotted curves, “reference water spectra,” i.e., previously measured and stored spectra from 30% H 2 O ; blue dashed curves, “fitted reference water spectra,” i.e., fits of the stored water spectra to the combined CO and H 2 O spectra. The second row of panels in each group (A2, A5, B2, B5, etc.): orange solid curves, “subtracted residual CO spectra,” originating from a background-corrected single-species-fitting, i.e., the difference between the combined CO and H 2 O signal and the stored reference water spectrum; black dashed–dotted curves, 2 f -wm-spectra fitted to the subtracted residual CO spectra. The third row of panels in each group (A3, A6, B3, B6, etc.): red solid curves, “fitted and subtracted residual CO spectra,” representing the difference between the combined CO and H 2 O signal and a fitted water spectrum; black dashed–dotted curves, the corresponding fit of a 2 f -wm model function representing the CO response.

Fig. 8
Fig. 8

2 f -wm-spectra from 30% water measured at 31 different temperatures (ranging from 700 ° C to 1000 ° C in intervals of 10 ° C ) in the spectral range centered about the R13, R14, R18, and R24 transitions displayed in panels A–D, respectively.

Fig. 9
Fig. 9

A 2 f -wm-signal from a combined CO and H 2 O spectrum measured at 850 ° C around the R14 transition of CO, evaluated by means of reference water spectra taken at nine different temperatures. The nine groups of panels, A–I, represent reference spectra corresponding to 700 ° C , 750 ° C , 800 ° C , 830 ° C , 850 ° C , 870 ° C , 900 ° C , 950 ° C , and 1000 ° C respectively. The solid curve in the upper panel in each group of panels (A1, B1, C1, etc.) represents the combined CO and H 2 O spectrum from 7% of CO and 30% of H 2 O at 850 ° C , while the dashed curve corresponds to the best fit of a reference water spectrum taken at the temperature to which the particular panel corresponds utilizing the dual-species-fitting technique. The solid curve in the lower panel in each group (A2, B2, C2, etc.) represents the difference between the combined CO and H 2 O spectrum and the fitted water spectrum, thus the fitted and subtracted residual CO spectrum that contains the CO information. The dashed curve represents the corresponding fit of the 2 f -wm model function for CO.

Fig. 10
Fig. 10

Assessed CO concentration from a gas mixture of 7% CO and 30% H 2 O in N 2 at 850 ° C using the single-reference-spectral-fitting methodology in combination with the dual-species-fitting technique addressing the R14 line. The error bars represent ± 2 σ , where σ is the standard deviation of the root mean square of the short- and long-term types of noise (which was assessed as 1.8%).

Fig. 11
Fig. 11

2 f -wm-spectra of water in the proximity of the R14 line of CO from seven different concentrations of water taken at 850 ° C . The seven curves (from bottom to top) represent water concentrations of 10%, 15%, 20%, 25%, 30%, 35%, and 40%, respectively.

Fig. 12
Fig. 12

2 f -wm-signal from a combined CO and H 2 O spectrum measured at 850 ° C around the R14 transition of CO, evaluated by means of reference water spectra taken at seven different water concentrations. The seven groups of panels, A–G, represent reference spectra corresponding to 10%, 15%, 20%, 25%, 30%, 35%, and 40% of H 2 O , respectively. The solid curves in the upper panel in each group of panels (A1, B1, C1, etc.) represent the combined CO and H 2 O spectrum from 7% of CO and 30% of H 2 O at 850 ° C , while the dashed curve corresponds to the best fit of a reference water spectrum taken at the water concentration to which the particular panel corresponds utilizing the dual-species-fitting technique. The solid curve in the lower panel in each group (A2, B2, C2) represents the difference between the combined two, thus the fitted and subtracted residual CO spectrum that contains the CO information. The dashed curve represents the corresponding fit of the 2 f -wm model function for CO.

Fig. 13
Fig. 13

Assessed CO concentration from a scan from 7% CO and 30% H 2 O in N 2 at 850 ° C using the R14 line evaluated using reference water spectra measured at various water concentrations as a function of water concentration. The error bars represent ± 2 σ , where σ is the standard deviation of the root-mean-square of the short- and long-term types of noise (which was assessed as 1.9%).

Fig. 14
Fig. 14

Solid squares, detection limit of CO at the R14 line in the presence of 30% water as a function of temperature; dashed curve, limit of detection that corresponds to a detectability of 5 × 10 5 .

Tables (1)

Tables Icon

Table 1 Compilation of Information about the Group of Candidate Transitions (R12–R27) at Room Temperature ( 23 ° C ) as Well as at an Elevated Temperature ( 1000 ° C )

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( ν , T ) = I 0 e α ( ν , T ) ,
α ( ν , T ) = S ( T ) χ ( ν , T ) n ( T ) L = S ( T ) χ ( ν , T ) c x p L ,
S 2 ( ν , ν a , T ) = β c x p L S ( T ) × { χ 2 ( ν , ν a , T ) I 0 + 1 2 [ χ 1 ( ν , ν a , T ) + χ 3 ( ν , ν a , T ) ] I 1 ( ν ) cos ( θ ) } ,
S ( T ) = S 0 ( T 0 ) Q 0 Q ( T ) ( T 0 T ) exp [ h c E k ( 1 T 1 T 0 ) ] × [ 1 exp ( h c ν 0 k T ) ] [ 1 exp ( h c ν 0 k T 0 ) ] 1 ,
Q ( T ) = a + b T + c T 2 + d T 3 ,
R ( v , c ¯ H 2 O , c CO , Δ v 0 H 2 O , v 0 CO , S 0 , ν a ) = S 2 CO + H 2 O ( v ) [ c ¯ H 2 O S 2 H 2 O ( v Δ v 0 H 2 O , ν a ) + c CO S 2 CO ( v v 0 CO , ν a ) ] + S 0 ,
S CO ( ν ) = a ( ν ν 0 CO ) [ χ 2 ( ν ν 0 CO , ν a ) + b χ 1 ( ν ν 0 CO , ν a ) + χ 3 ( ν ν 0 CO , ν a ) 2 ] ,

Metrics