Abstract

The idea of Bragg gratings generated during the drawing process of a fiber dates back almost 20 years. The technical improvement of the draw tower grating (DTG) process today results in highly reliable and cost-effective Bragg gratings for versatile application in the optical fiber sensor market. Because of the single-pulse exposure of the fiber, the gratings behave typically like type I gratings with respect to their temperature stability. This means that such gratings only work up to temperatures of about 300°C. To increase temperature stability, we combined DTG arrays with hydrogen postloading and a thermal regeneration process that enables their use in high-temperature environments. The regenerated draw tower gratings are demonstrated to be suitable for temperatures of more than 800°C.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29, 1577–1578 (1993).
    [CrossRef]
  2. C. G. Askins and E. J. Friebele, “Technique to prepare high-reflectance optical fiber Bragg gratings with single exposure in-line on fiber draw tower,” Patent Accession number ADD017445 (March 21, 1995).
  3. J. L. Archambault, L. Reeki, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29, 453–455 (1993).
    [CrossRef]
  4. C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
    [CrossRef]
  5. B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
    [CrossRef]
  6. L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193 nm excimer laser,” Opt. Lett. 21, 2032–2034 (1996).
    [CrossRef] [PubMed]
  7. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high temperature operation,” Opt. Lett. 29, 2360–2362(2004).
    [CrossRef] [PubMed]
  8. M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilisation of Type-I fibre Bragg gratings for operation up to 600 °C,” Opt. Lett. 35, 586–588 (2010).
    [CrossRef] [PubMed]
  9. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800 nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
    [CrossRef]
  10. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21, 682–684 (2009).
    [CrossRef]
  11. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19, 1759–1765 (2002).
    [CrossRef]
  12. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-cooped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
    [CrossRef] [PubMed]
  13. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
    [CrossRef]
  14. E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17, 12523–12531 (2009).
    [CrossRef] [PubMed]
  15. E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
    [CrossRef]
  16. E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
    [CrossRef]
  17. J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. L. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. Rapid Pub. 4, 09052 (2009).
    [CrossRef]

2011

E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
[CrossRef]

2010

2009

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. L. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. Rapid Pub. 4, 09052 (2009).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17, 12523–12531 (2009).
[CrossRef] [PubMed]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
[CrossRef]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21, 682–684 (2009).
[CrossRef]

2008

2005

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

2004

2002

1996

1995

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

1993

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29, 1577–1578 (1993).
[CrossRef]

J. L. Archambault, L. Reeki, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29, 453–455 (1993).
[CrossRef]

Archambault, J. L.

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29, 1577–1578 (1993).
[CrossRef]

J. L. Archambault, L. Reeki, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29, 453–455 (1993).
[CrossRef]

Askins, C. G.

C. G. Askins and E. J. Friebele, “Technique to prepare high-reflectance optical fiber Bragg gratings with single exposure in-line on fiber draw tower,” Patent Accession number ADD017445 (March 21, 1995).

Aslund, M. L.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. L. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. Rapid Pub. 4, 09052 (2009).
[CrossRef]

Åslund, M. L.

Bandyopadhyay, S.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. L. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. Rapid Pub. 4, 09052 (2009).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-cooped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef] [PubMed]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
[CrossRef]

Bartelt, H.

E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17, 12523–12531 (2009).
[CrossRef] [PubMed]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
[CrossRef]

Bayon, J. F.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Becker, M.

E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17, 12523–12531 (2009).
[CrossRef] [PubMed]

Bernage, P.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Biswas, P.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. L. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. Rapid Pub. 4, 09052 (2009).
[CrossRef]

Canning, J.

E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
[CrossRef]

M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilisation of Type-I fibre Bragg gratings for operation up to 600 °C,” Opt. Lett. 35, 586–588 (2010).
[CrossRef] [PubMed]

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. L. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. Rapid Pub. 4, 09052 (2009).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-cooped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef] [PubMed]

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high temperature operation,” Opt. Lett. 29, 2360–2362(2004).
[CrossRef] [PubMed]

Chojetzki, C.

E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17, 12523–12531 (2009).
[CrossRef] [PubMed]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
[CrossRef]

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Cook, K.

Ding, H.

Dong, L.

L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193 nm excimer laser,” Opt. Lett. 21, 2032–2034 (1996).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29, 1577–1578 (1993).
[CrossRef]

Fenton, J.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. L. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. Rapid Pub. 4, 09052 (2009).
[CrossRef]

Fokine, M.

Friebele, E. J.

C. G. Askins and E. J. Friebele, “Technique to prepare high-reflectance optical fiber Bragg gratings with single exposure in-line on fiber draw tower,” Patent Accession number ADD017445 (March 21, 1995).

Grobnic, D.

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21, 682–684 (2009).
[CrossRef]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800 nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

Groothoff, N.

Guenot, P.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Lindner, E.

E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17, 12523–12531 (2009).
[CrossRef] [PubMed]

Liu, W. F.

Lu, P.

Mihailov, S. J.

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21, 682–684 (2009).
[CrossRef]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800 nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

Mueller, H. R.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Niay, P.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Ommer, J.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Payne, D. N.

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29, 1577–1578 (1993).
[CrossRef]

Poumellec, B.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Reeki, L.

J. L. Archambault, L. Reeki, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29, 453–455 (1993).
[CrossRef]

Reekie, L.

L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193 nm excimer laser,” Opt. Lett. 21, 2032–2034 (1996).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29, 1577–1578 (1993).
[CrossRef]

Riant, I.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Rothhardt, M.

E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17, 12523–12531 (2009).
[CrossRef] [PubMed]

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Russell, P. St. J.

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29, 1577–1578 (1993).
[CrossRef]

J. L. Archambault, L. Reeki, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29, 453–455 (1993).
[CrossRef]

Sansonetti, P.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Schuster, K.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Smelser, C. W.

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21, 682–684 (2009).
[CrossRef]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800 nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

Stevenson, M.

Unger, S.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Unruh, J.

Vlekken, J.

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
[CrossRef]

Walker, R. B.

Electron. Lett.

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29, 1577–1578 (1993).
[CrossRef]

J. L. Archambault, L. Reeki, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29, 453–455 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21, 682–684 (2009).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. L. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. Rapid Pub. 4, 09052 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

E. Lindner, J. Canning, C. Chojetzki, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,“ Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Opt. Eng.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings-arrays and single gratings of type II,” Opt. Eng. 44, 060503 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Sensors

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
[CrossRef]

E. Lindner, C. Chojetzki, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber Bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9, 8377–8381 (2009).
[CrossRef]

Other

C. G. Askins and E. J. Friebele, “Technique to prepare high-reflectance optical fiber Bragg gratings with single exposure in-line on fiber draw tower,” Patent Accession number ADD017445 (March 21, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Draw tower grating inscription setup.

Fig. 2
Fig. 2

Bragg wavelength and grating reflectivity during the annealing process.

Fig. 3
Fig. 3

Grating spectrum (a) before and (b) after regeneration.

Fig. 4
Fig. 4

Calibration graph of a regenerated DTG.

Metrics