Abstract

The signal model of a superresolution optical channel can be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector are properly described, a general mathematical model of the superresolution disc itself has not yet been available until recently. Different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. A complete signal-based or phenomenological optical channel model—from non-return-to-zero inverted input to disc readout signal—has recently been developed including the reflectivity of a superresolution disc with InSb used for the mask layer. In this contribution, the model is now extended and applied to a moving disc including a land-and-pit structure, and results are compared with data read from real superresolution discs. Both impulse response and resolution limits are derived and discussed. Thus the model provides a bridge from physical to readout signal properties, which count after all. The presented approach allows judging of the suitability of a mask layer material for storage density enhancement already based on static experiments, i.e., even before developing an associated disc drive.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.
  2. B. Hyot, X. Biquard, and F. Laulagnet, “Superresolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences, Zermatt, Switzerland, 1–4 September 2007.
  3. D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.
  4. D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.
  5. URL: http://www.4goodtechnology.org.
  6. G. Bouwhuis and H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3766–3768 (1990).
    [CrossRef] [PubMed]
  7. K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993).
    [CrossRef]
  8. J.-R. Liu, P.-Y. Liu, N.-Y. Tang, and H.-P. D. Shieh, “Pulse-read on erasable thermal phase-change superresolution disks,” Appl. Opt. 37, 8187–8194 (1998).
    [CrossRef]
  9. J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
    [CrossRef]
  10. J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
    [CrossRef]
  11. B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences ( 2007).
  12. D. Hepper and S. Knappmann, “Channel model for InSb-based superresolution optical disc system,” Appl. Opt. 49, 1923–1931 (2010).
    [CrossRef] [PubMed]
  13. Y. Li, “Degeneracy in the Fraunhofer diffraction of truncated Gaussian beams,” J. Opt. Soc. Am. A 4, 1237–1242 (1987).
    [CrossRef]
  14. K. Cai, “Design and analysis of parity-check-code-based optical recording systems,” Ph.D. dissertation (Technical University of Eindhoven/National University of Singapore, 2007).
  15. H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. Commun. 50, 2052–2063 (2002).
    [CrossRef]
  16. J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the superresolution effect. Real-time characterization of the huge and reversible optical nonlinearity of InSb,“ presented at the ISOM 2007 International Symposium on Optical Memory ((2007).
  17. A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern,” Rheinisch-Westfälische Technische Hochschule Aachen, Germany (2008).
  18. J. Pichon, “Enregistrement optique haute densité: etude physique et physico-chimique du phénomène de superresolution,” Ph.D. dissertation (Institut Polytechnique de Grenoble, 2008).
  19. A. B. Marchant, “Optical disk readout: a model for coherent scanning,” Appl. Opt. 21, 2085–2088 (1982).
    [CrossRef] [PubMed]
  20. V. B. Jipson and C. C. Williams, “Two-dimensional modeling of an optical disk readout,” Appl. Opt. 22, 2202–2209 (1983).
    [CrossRef] [PubMed]
  21. Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996).
    [CrossRef]
  22. J.-R. Liu, P.-Y. Liu, N.-Y. Tang, and H.-P. D. Shieh, “Pulse-read on erasable thermal phase-change superresolution disks,” Appl. Opt. 37, 8187–8194 (1998).
    [CrossRef]
  23. D. Hepper, G. Pilard, X.-M. Chen, and C. Féry, “Optical channel characterization for an InSb-based superresolution disc system,” Proc. SPIE 7730, 773026 (2010).

2010

D. Hepper and S. Knappmann, “Channel model for InSb-based superresolution optical disc system,” Appl. Opt. 49, 1923–1931 (2010).
[CrossRef] [PubMed]

D. Hepper, G. Pilard, X.-M. Chen, and C. Féry, “Optical channel characterization for an InSb-based superresolution disc system,” Proc. SPIE 7730, 773026 (2010).

2006

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

2004

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
[CrossRef]

2002

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. Commun. 50, 2052–2063 (2002).
[CrossRef]

1998

1996

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996).
[CrossRef]

1993

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993).
[CrossRef]

1990

1987

1983

1982

Anciant, R.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

Aratani, K.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993).
[CrossRef]

Armand, M.-F.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the superresolution effect. Real-time characterization of the huge and reversible optical nonlinearity of InSb,“ presented at the ISOM 2007 International Symposium on Optical Memory ((2007).

Behringer, M.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Bergmans, J. W. M.

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. Commun. 50, 2052–2063 (2002).
[CrossRef]

Biquard, X.

B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences ( 2007).

B. Hyot, X. Biquard, and F. Laulagnet, “Superresolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences, Zermatt, Switzerland, 1–4 September 2007.

Bouwhuis, G.

Bruneau, J.-M.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Cai, K.

K. Cai, “Design and analysis of parity-check-code-based optical recording systems,” Ph.D. dissertation (Technical University of Eindhoven/National University of Singapore, 2007).

Chen, X.-M.

D. Hepper, G. Pilard, X.-M. Chen, and C. Féry, “Optical channel characterization for an InSb-based superresolution disc system,” Proc. SPIE 7730, 773026 (2010).

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.

Coene, W. M. J.

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. Commun. 50, 2052–2063 (2002).
[CrossRef]

Eyberg, R.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Féry, C.

D. Hepper, G. Pilard, X.-M. Chen, and C. Féry, “Optical channel characterization for an InSb-based superresolution disc system,” Proc. SPIE 7730, 773026 (2010).

Först, M.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern,” Rheinisch-Westfälische Technische Hochschule Aachen, Germany (2008).

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Franke, A.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Frerichs, M.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Fukaya, T.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
[CrossRef]

Fukumoto, A.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996).
[CrossRef]

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993).
[CrossRef]

Gahn, C.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Gidon, S.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

Hepper, D.

D. Hepper and S. Knappmann, “Channel model for InSb-based superresolution optical disc system,” Appl. Opt. 49, 1923–1931 (2010).
[CrossRef] [PubMed]

D. Hepper, G. Pilard, X.-M. Chen, and C. Féry, “Optical channel characterization for an InSb-based superresolution disc system,” Proc. SPIE 7730, 773026 (2010).

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.

Hyot, B.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the superresolution effect. Real-time characterization of the huge and reversible optical nonlinearity of InSb,“ presented at the ISOM 2007 International Symposium on Optical Memory ((2007).

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

B. Hyot, X. Biquard, and F. Laulagnet, “Superresolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences, Zermatt, Switzerland, 1–4 September 2007.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences ( 2007).

Jipson, V. B.

Kaneko, M.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996).
[CrossRef]

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993).
[CrossRef]

Kasami, Y.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996).
[CrossRef]

Knappmann, S.

D. Hepper and S. Knappmann, “Channel model for InSb-based superresolution optical disc system,” Appl. Opt. 49, 1923–1931 (2010).
[CrossRef] [PubMed]

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.

Knittel, J.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Kolobov, A.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
[CrossRef]

Kurz, H.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern,” Rheinisch-Westfälische Technische Hochschule Aachen, Germany (2008).

Kuwahara, M.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
[CrossRef]

Laulagnet, F.

B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences ( 2007).

B. Hyot, X. Biquard, and F. Laulagnet, “Superresolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences, Zermatt, Switzerland, 1–4 September 2007.

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the superresolution effect. Real-time characterization of the huge and reversible optical nonlinearity of InSb,“ presented at the ISOM 2007 International Symposium on Optical Memory ((2007).

Lell, A.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Li, Y.

Liu, J.-R.

Liu, P.-Y.

Marchant, A. B.

Marchewka, A.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern,” Rheinisch-Westfälische Technische Hochschule Aachen, Germany (2008).

Nakano, T.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
[CrossRef]

Ono, M.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996).
[CrossRef]

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993).
[CrossRef]

Pichon, J.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the superresolution effect. Real-time characterization of the huge and reversible optical nonlinearity of InSb,“ presented at the ISOM 2007 International Symposium on Optical Memory ((2007).

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

J. Pichon, “Enregistrement optique haute densité: etude physique et physico-chimique du phénomène de superresolution,” Ph.D. dissertation (Institut Polytechnique de Grenoble, 2008).

Pilard, G.

D. Hepper, G. Pilard, X.-M. Chen, and C. Féry, “Optical channel characterization for an InSb-based superresolution disc system,” Proc. SPIE 7730, 773026 (2010).

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.

Poupinet, L.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

Pozidis, H.

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. Commun. 50, 2052–2063 (2002).
[CrossRef]

Richter, H.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.

Ripperda, C.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern,” Rheinisch-Westfälische Technische Hochschule Aachen, Germany (2008).

Semar, W.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Shieh, H.-P. D.

Shima, T.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
[CrossRef]

Spruit, H. M.

Tang, N.-Y.

Theis, O.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.

Tominaga, J.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
[CrossRef]

Williams, C. C.

Wolter, K.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern,” Rheinisch-Westfälische Technische Hochschule Aachen, Germany (2008).

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

Wuttig, M.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.

Yasuda, K.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996).
[CrossRef]

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993).
[CrossRef]

Appl. Opt.

IEEE Trans. Commun.

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. Commun. 50, 2052–2063 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993).
[CrossRef]

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996).
[CrossRef]

Nanotechnology

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004).
[CrossRef]

Proc. SPIE

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006).
[CrossRef]

D. Hepper, G. Pilard, X.-M. Chen, and C. Féry, “Optical channel characterization for an InSb-based superresolution disc system,” Proc. SPIE 7730, 773026 (2010).

Other

B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences ( 2007).

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.

B. Hyot, X. Biquard, and F. Laulagnet, “Superresolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences, Zermatt, Switzerland, 1–4 September 2007.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.

URL: http://www.4goodtechnology.org.

K. Cai, “Design and analysis of parity-check-code-based optical recording systems,” Ph.D. dissertation (Technical University of Eindhoven/National University of Singapore, 2007).

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the superresolution effect. Real-time characterization of the huge and reversible optical nonlinearity of InSb,“ presented at the ISOM 2007 International Symposium on Optical Memory ((2007).

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern,” Rheinisch-Westfälische Technische Hochschule Aachen, Germany (2008).

J. Pichon, “Enregistrement optique haute densité: etude physique et physico-chimique du phénomène de superresolution,” Ph.D. dissertation (Institut Polytechnique de Grenoble, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Model of the reflectivity R of an infinitesimal disc element ( x , y ) depending on accumulated energy E ( x , y , n ) while subjected to laser intensity I ( x , y , n ) .

Fig. 2
Fig. 2

Reflectivity (left) and reflected intensity (right) as spatial functions (top) at t = 800 ns after moving the focused spot over the long pit with v = 3 m / s , P = 3 mW . Bottom figures show cross sections at y = 0 (blue) and sum in radial direction (red, normalized to same maximum). The shape of the focused spot is shown in pink (bottom left).

Fig. 3
Fig. 3

Normalized cross section (a) and sum in radial direction (b) of reflected intensity at t = 800 ns after moving the focused spot over the long pit with v = 3 m / s , P = 3 mW (straight lines) versus the shape of the focused spot (dashed), which is also the shape of the reflected intensity in the diffraction-limited case at P = 0.5 mW .

Fig. 4
Fig. 4

Overall reflected versus incoming power while moving the focused spot along the disc with the long pit at v = 3 m / s , P = 3 mW (i.e., the t grid spacing of 100 ns corresponds to a movement by 300 nm ). The part of the curve around t = 500 ns indicates the step response.

Fig. 5
Fig. 5

Impulse response (blue) of the superresolution disc material with a long pit at v = 3 m / s , P = 3 mW [reflected intensity, normalized, and mirrored along t for comparison (dashed): cross section (green) and sum in radial direction (red)].

Fig. 6
Fig. 6

Impulse response for an InSb-based superresolution test at v = 2.46 m / s , P = 1.5 mW (minimum mark length 80 nm ).

Fig. 7
Fig. 7

Normalized information density S ( = 1 / e width of impulse response as a number of samples or symbol periods) as a function of read power P for an InSb-based superresolution test disc measured at various scanning speeds v (see legend in m/s).

Fig. 8
Fig. 8

1 / e width of impulse response as a function of read power P at a scanning speed of v = 3 m / s for the model with T s = 60 ns , 30 ns , or 20 ns .

Fig. 9
Fig. 9

Method of determining the resolution limit: The impulse response and a shifted version (both blue) are summed (black); the shift (in units of model resolution here) is reduced until there is no more dip in the sum (gray arrow). The resulting shift D is used to determine the resolution limit.

Fig. 10
Fig. 10

Width of the model impulse response at various levels (“ d ”, see text), and resolution limit estimate RL ( v = 5 m / s , T s = 30 ns ).

Tables (1)

Tables Icon

Table 1 Parameter Values for the Reflectivity Model of an InSb-Based Superresolution Optical Disc ( R 0 is Normalized to be 1 for Simplicity)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = π · P · NA 2 λ 2 ( 2 J 1 ( 2 π x 2 + y 2 NA / λ ) 2 π x 2 + y 2 NA / λ ) 2 ,
R ( x , y , n ) = { r · E ( x , y , n ) + R 0 if     E ( x , y , n ) E Thr R max if     E ( x , y , n ) > E Thr .
T = { T s if     E ( x , y , n 1 ) E Thr T m if     E ( x , y , n 1 ) > E Thr .
R pit = 0.5 · R 0 ,
RL DL = 1 2 f c = λ 4 NA .
RL SR = D 2 .

Metrics