Abstract

A subwavelength concentric ring metal grating for visible light (λ=632.8nm) is designed and fabricated by electron-beam lithography to transform circularly polarized light into radially polarized light. Experimental results are compared to theoretical predictions and the advantages and disadvantages of the element with alternative methods are discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [CrossRef]
  2. Q. Zhan, “Trapping metallic rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [CrossRef] [PubMed]
  3. V. G. Niziev and V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
    [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1988).
  5. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
    [CrossRef]
  6. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 188–190 (2002).
    [CrossRef]
  7. U. Levy, C. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720 (2004).
    [CrossRef] [PubMed]
  8. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
    [CrossRef]
  9. F. Wang, M. Xiao, K. Sun, and Q. H. Wei, “Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films,” Opt. Express 18, 63–71 (2010).
    [CrossRef] [PubMed]
  10. M. R. Gadsdon, I. R. Hooper, and J. R. Sambles, “Optical resonances on sub-wavelength silver lamellar gratings,” Opt. Express 16, 22003–22026 (2008).
    [CrossRef] [PubMed]
  11. M. Neviere and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, 2003).
  12. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  13. D.H.Goldstein and E.Collett, ed. Polarized Light (Marcel Dekker, 2003).
    [CrossRef]
  14. E.A.Lee and D.G.Messerschmidt, eds., Digital Communication, 2nd ed. (Kluwer, 1994).
  15. G. M. Lerman and U. Levy, “Generation of radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33, 2782–2784(2008).
    [CrossRef] [PubMed]

2010 (1)

2008 (2)

2005 (1)

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

2004 (2)

2003 (2)

M. Neviere and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, 2003).

D.H.Goldstein and E.Collett, ed. Polarized Light (Marcel Dekker, 2003).
[CrossRef]

2002 (1)

2001 (1)

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

1999 (1)

V. G. Niziev and V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

1994 (1)

E.A.Lee and D.G.Messerschmidt, eds., Digital Communication, 2nd ed. (Kluwer, 1994).

1988 (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1988).

1985 (1)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Biener, G.

Bomzon, Z.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 188–190 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Fainman, Y.

Gadsdon, M. R.

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 188–190 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

Hooper, I. R.

Kleiner, V.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 188–190 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

Lerman, G. M.

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Levy, U.

Nesterov, V.

V. G. Niziev and V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Neviere, M.

M. Neviere and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, 2003).

Niziev, V. G.

V. G. Niziev and V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Pang, L.

Popov, E.

M. Neviere and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, 2003).

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1988).

Sambles, J. R.

Sun, K.

Tsai, C.

Wang, F.

Wei, Q. H.

Xiao, M.

Zhan, Q.

Appl. Phys. B (1)

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

J. Phys. D (1)

V. G. Niziev and V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1988).

M. Neviere and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, 2003).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

D.H.Goldstein and E.Collett, ed. Polarized Light (Marcel Dekker, 2003).
[CrossRef]

E.A.Lee and D.G.Messerschmidt, eds., Digital Communication, 2nd ed. (Kluwer, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Geometry of concentric ring polarizer as space-variant local polarizer.

Fig. 2
Fig. 2

Geometry and parameters used for calculation (a) without, and (b) with Al 2 O 3 film on the unprotected Al structures.

Fig. 3
Fig. 3

Behavior of (a) TM transmission with respect to modulation depth and period in presence of Al 2 O 3 , and (b) extinction ratio and TM transmission with respect to duty cycle (period 200 nm and modulation depth of 200 nm ).

Fig. 4
Fig. 4

SEM pictures of parts of fabricated wire grating (a) in the center and (b) in radius 1.5 mm from the center.

Fig. 5
Fig. 5

Setup for measuring the Stokes parameters.

Fig. 6
Fig. 6

(a) Orientation and (b), (c) ellipticity angles of the polarization ellipse calculated from the measured Stokes parameters.

Fig. 7
Fig. 7

Intensity profile of the radially polarized light.

Fig. 8
Fig. 8

Measured polarization ellipse parameters of propagating mode.

Fig. 9
Fig. 9

Efficiency and extinction ratio with respect to wavelength; the structural parameters are: period 200 nm , height 200 nm , and duty cycle 0.4.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

( cos θ sin θ sin θ cos θ ) ( q r 0 0 q θ ) ( cos θ sin θ sin θ cos θ ) ( 1 i ) = ( q r cos θ i q θ sin θ q r sin θ + i q θ cos θ ) e i θ .
tan 2 ψ = 2 q 1 q 2 sin δ , sin 2 χ = 2 q 1 + q 2 cos δ ,
Ext = ( q r 0 q θ 0 ) 2 = q 2 .
I ( θ ) = 1 2 [ A B sin 2 θ + C cos 4 θ + D sin 4 θ ] ,
A = ( S 0 + S 1 2 ) , B = S 3 ,
C = S 1 2 , D = S 2 2 ,
tan 2 ψ = S 2 S 1 , sin 2 χ = S 3 S 0 .
E r = HG 10 e x + HG 01 e y .

Metrics