Abstract

A maskless three-dimensional (3D) microfabrication method based on a digital micromirror device (DMD) is proposed for high lateral and vertical resolution. A substrate is scanned laterally under virtual masks of the DMD. The masks are allocated to a large number of virtual slices, all of which are projected in a single scan of the stage. A theoretical model for the cumulative dose distribution in a photoresist is derived and used to predict the resulting 3D profile. Experiments showed that the proposed method is promising for avoiding the stair-step problem and preventing misalignment errors.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Stern, M. Holz, S. Medeiros, and R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117–3121 (1991).
    [CrossRef]
  2. T. J. Suleski and D. C. O’Shea, “Gray-scale mask for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
    [CrossRef] [PubMed]
  3. A. H. O. Kärkkäinen, J. M. Tamkin, J. D. Rogers, D. R. Neal, O. E. Hormi, G. E. Jabbour, J. T. Rantala, and M. R. Descour, “Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication,” Appl. Opt. 41, 3988–3998 (2002).
    [CrossRef] [PubMed]
  4. C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
    [CrossRef]
  5. Z. Zhou and S. H. Lee, “Fabrication of an improved gray-scale mask for refractive micro- and meso-optics,” Opt. Lett. 29, 457–458 (2004).
    [CrossRef] [PubMed]
  6. J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
    [CrossRef]
  7. M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
    [CrossRef]
  8. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators. A Phys. 121, 113–120 (2005).
    [CrossRef]
  9. Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006).
    [CrossRef]
  10. J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009).
    [CrossRef]
  11. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators. A Phys. 130–131, 387–392(2006).
    [CrossRef]
  12. K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003).
    [CrossRef]
  13. H. Shirota and A. Kuwabara, “Pattern writing apparatus and pattern writing method,” U.S. patent 6,903,798 B2 (7 June 2005).
  14. U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005).
    [CrossRef]
  15. T. Okuyama and H. Washiyama, “Multi-exposure drawing method and apparatus therefor,” U.S. patent 7,136,087(14 November 2006).
  16. D.-H. Lee, “Optical system with 4 μm resolution for maskless lithography using digital micromirror device,” J. Opt. Soc. Korea 14, 266–276 (2010).
    [CrossRef]
  17. J. R. Sheats and B. W. Smith, Microlithography Science and Technology (Dekker, 1998).

2010 (1)

2009 (1)

J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009).
[CrossRef]

2007 (1)

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

2006 (2)

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators. A Phys. 130–131, 387–392(2006).
[CrossRef]

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006).
[CrossRef]

2005 (2)

U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005).
[CrossRef]

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators. A Phys. 121, 113–120 (2005).
[CrossRef]

2004 (2)

Z. Zhou and S. H. Lee, “Fabrication of an improved gray-scale mask for refractive micro- and meso-optics,” Opt. Lett. 29, 457–458 (2004).
[CrossRef] [PubMed]

J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
[CrossRef]

2003 (2)

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003).
[CrossRef]

2002 (1)

1998 (1)

J. R. Sheats and B. W. Smith, Microlithography Science and Technology (Dekker, 1998).

1995 (1)

1991 (1)

M. B. Stern, M. Holz, S. Medeiros, and R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117–3121 (1991).
[CrossRef]

Aassime, A.

J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
[CrossRef]

Abe, M.

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Askebjer, P.

U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005).
[CrossRef]

Aubert, J.

J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
[CrossRef]

Belier, B.

J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
[CrossRef]

Bouville, D.

J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
[CrossRef]

Chan, K. F.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003).
[CrossRef]

Chen, S.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006).
[CrossRef]

Cho, S. H.

J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009).
[CrossRef]

Choi, J. W.

J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009).
[CrossRef]

Descour, M. R.

Esashi, M.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators. A Phys. 130–131, 387–392(2006).
[CrossRef]

Fang, N.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators. A Phys. 121, 113–120 (2005).
[CrossRef]

Feng, Z.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003).
[CrossRef]

Fujishiro, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators. A Phys. 130–131, 387–392(2006).
[CrossRef]

Galas, J. C.

J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
[CrossRef]

Ghodssi, R.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

Ha, C. S.

J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009).
[CrossRef]

Hayashi, N.

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Hoga, M.

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Holz, M.

M. B. Stern, M. Holz, S. Medeiros, and R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117–3121 (1991).
[CrossRef]

Hormi, O. E.

Ishikawa, A.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003).
[CrossRef]

Jabbour, G. E.

Kärkkäinen, A. H. O.

Karlin, T.

U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005).
[CrossRef]

Knowlden, R. E.

M. B. Stern, M. Holz, S. Medeiros, and R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117–3121 (1991).
[CrossRef]

Kurihara, M.

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Kuwabara, A.

H. Shirota and A. Kuwabara, “Pattern writing apparatus and pattern writing method,” U.S. patent 6,903,798 B2 (7 June 2005).

Lee, D.-H.

Lee, S. H.

J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009).
[CrossRef]

Z. Zhou and S. H. Lee, “Fabrication of an improved gray-scale mask for refractive micro- and meso-optics,” Opt. Lett. 29, 457–458 (2004).
[CrossRef] [PubMed]

Ljungblad, U. B.

U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005).
[CrossRef]

Lu, Y.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006).
[CrossRef]

Mapili, G.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006).
[CrossRef]

Medeiros, S.

M. B. Stern, M. Holz, S. Medeiros, and R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117–3121 (1991).
[CrossRef]

Mei, W.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003).
[CrossRef]

Modafe, A.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

Mohri, H.

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Neal, D. R.

O’Shea, D. C.

Okuyama, T.

T. Okuyama and H. Washiyama, “Multi-exposure drawing method and apparatus therefor,” U.S. patent 7,136,087(14 November 2006).

Palomo, J.

J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
[CrossRef]

Rantala, J. T.

Rogers, J. D.

Roy, K.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006).
[CrossRef]

Sandstrom, T.

U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005).
[CrossRef]

Sheats, J. R.

J. R. Sheats and B. W. Smith, Microlithography Science and Technology (Dekker, 1998).

Shimomura, T.

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Shirota, H.

H. Shirota and A. Kuwabara, “Pattern writing apparatus and pattern writing method,” U.S. patent 6,903,798 B2 (7 June 2005).

Sjoeberg, H.

U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005).
[CrossRef]

Smith, B. W.

J. R. Sheats and B. W. Smith, Microlithography Science and Technology (Dekker, 1998).

Stern, M. B.

M. B. Stern, M. Holz, S. Medeiros, and R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117–3121 (1991).
[CrossRef]

Suhali, G.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006).
[CrossRef]

Suleski, T. J.

Sun, C.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators. A Phys. 121, 113–120 (2005).
[CrossRef]

Suzuki, K.

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Tamkin, J. M.

Tanaka, S.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators. A Phys. 130–131, 387–392(2006).
[CrossRef]

Totsu, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators. A Phys. 130–131, 387–392(2006).
[CrossRef]

Waits, C. M.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

Washiyama, H.

T. Okuyama and H. Washiyama, “Multi-exposure drawing method and apparatus therefor,” U.S. patent 7,136,087(14 November 2006).

Wicker, R. B.

J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009).
[CrossRef]

Wu, D. M.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators. A Phys. 121, 113–120 (2005).
[CrossRef]

Yang, R.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003).
[CrossRef]

Yoshida, K.

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Zhang, X.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators. A Phys. 121, 113–120 (2005).
[CrossRef]

Zhou, Z.

Appl. Opt. (2)

J. Biomed. Mater. Res. Part A (1)

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006).
[CrossRef]

J. Microlith. Microfab. Microsyst. (1)

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

J. Opt. Soc. Korea (1)

J. Vac. Sci. Technol. (2)

M. B. Stern, M. Holz, S. Medeiros, and R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117–3121 (1991).
[CrossRef]

J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004).
[CrossRef]

Microelec. Eng. (1)

M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005).
[CrossRef]

Rapid Prototyping J. (1)

J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009).
[CrossRef]

Sens. Actuators. A Phys. (2)

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators. A Phys. 130–131, 387–392(2006).
[CrossRef]

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators. A Phys. 121, 113–120 (2005).
[CrossRef]

Other (3)

T. Okuyama and H. Washiyama, “Multi-exposure drawing method and apparatus therefor,” U.S. patent 7,136,087(14 November 2006).

H. Shirota and A. Kuwabara, “Pattern writing apparatus and pattern writing method,” U.S. patent 6,903,798 B2 (7 June 2005).

J. R. Sheats and B. W. Smith, Microlithography Science and Technology (Dekker, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the implemented DMD-based maskless system.

Fig. 2
Fig. 2

Schematic for fabricating 3D microstructure. (a) Desired profile for fabrication; (b) required distribution and sliced contours of dose; (c) multiple exposures by a single scan; and (d) resulting profile of photoresist structure.

Fig. 3
Fig. 3

Photoresist thickness as a function of exposure dose under development.

Fig. 4
Fig. 4

Schematic illustration of multilayered exposures by a single scan. (a) Required dose distribution and (b) sliced dose contours in each virtual layer. (c) Multilayered exposures in each step position. (d) Accumulation dose and (e) resulting distribution of the exposure dose relative to each contour dose.

Fig. 5
Fig. 5

(a) Exposures by mirrors at each step position, and (b) distribution of the resulting exposure dose.

Fig. 6
Fig. 6

Cumulative dose as a result of multilayered exposures.

Fig. 7
Fig. 7

Desired profiles of (a) spherical lens and (b) triangular pyramid structure.

Fig. 8
Fig. 8

Resulting profiles of microlens [(a) and (c)] and triangular feature [(b) and (d)] calculated using the accumulation model. The profiles obtained for w values of 0.1, 4, and 8 μm are shown in (a) and (b), and those of 12, 16, and 20 μm are shown in (c) and (d).

Fig. 9
Fig. 9

SEM photographs of fabricated microspherical lens [(a) and (b)] and the triangular pyramid array [(c) and (d)].

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

γ = 1 ln E cl ln E th = t ( x , y ) / T 0 ln E ( x , y ) ln E th , where     0 < t ( x , y ) < T 0 and E th < E ( x , y ) < E cl .
E ( x , y ) = exp ( t ( x , y ) T 0 · γ + ln E th ) .
E ( x ) = f ( x w 2 ) , for     w 2 x < d + w 2 = 0 , for     x < w 2 = E max = f ( d ) , for     x d + w 2 .
ε i ( x ) = f ( d ) n · w ( x x i 1 x x i 1 w ) ,
Ε i ( x ) = l = 0 i ε l ( x ) = f ( d ) n · w ( j = 1 i x x j 1 k = 1 i x x k 1 w ) .
Ε i ( 1 ) = Ε i 1 ( 1 ) + f ( d ) n · w · i · ( x i x i 1 ) = f ( d ) n · w { x 1 2 ( x 2 x 1 ) + 3 ( x 3 x 2 ) + + i ( x i x i 1 ) } = f ( d ) w · x i · i n 1 w · f ( d ) n · j = 1 i x j 1 .
lim n [ f ( d ) n · j = 1 i x j 1 ] = x f ( x ) 0 x f ( τ ) d τ = x f ( x ) F ( x ) .
Ε ( 1 ) ( x ) = 1 w F ( x ) , for     0 x < w .
Ε ( 2 ) ( x ) = Ε ( 1 ) ( x ) Ε ( 1 ) ( x w ) = 1 w { F ( x ) F ( x w ) } , w x < d .
Ε ( 3 ) ( x ) = Ε ( 1 ) ( d ) + f ( d ) n · w · n · x d Ε ( 1 ) ( x w ) = 1 w { f ( d ) ( x d ) F ( x w ) + F ( d ) } , for     d x < w + d .
Ε ( 2 ) ( x ) = Ε ( 1 ) ( d ) + f ( d ) n · w · n · x d = 1 w { f ( d ) ( x d ) + F ( d ) } , for     d x < w .
t ( x ) = T 0 · γ · ln ( Ε ( x ) E th ) .
v = I · W E cl and fr = v p .

Metrics