Abstract

The transmittance of one-dimensional photonic crystals consisting of superconductor and lossless dielectric has been systematically studied through the transfer-matrix method. Obviously, the shift of the photonic bandgap (PBG) becomes more noticeable by adjusting the thicknesses of the dielectric layers than that of superconductor layers. Furthermore, the number of PBGs can be controlled by varying the thicknesses of dielectric layers. Compared to the thicknesses of the dielectric layers, the width of the PBGs is more sensitive to the thicknesses of the superconductor layers. However, the width of the first PBG promptly varies when the thicknesses of the dielectric layers increase from 0 to 40nm. If the contribution of the normal conducting electrons of the superconductor is nonnegligible, the temperature of the superconductor has no influence on the width of the PBGs. Moreover, the damp coefficient does not affect the PBGs under low-temperature conditions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. H. Takeda and K. Yoshino, “TE-TM mode coupling in two-dimensional photonic crystals composed of liquid-crystal rods,” Phys. Rev. E. 70, 026601 (2004).
    [CrossRef]
  4. V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B. 55, 7427–7444 (1997).
    [CrossRef]
  5. J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90, 261111 (2007).
    [CrossRef]
  6. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B. 44, 8565–8571 (1991).
    [CrossRef]
  7. C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
    [CrossRef]
  8. E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B. 65, 155120 (2002).
    [CrossRef]
  9. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
    [CrossRef]
  10. S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
    [CrossRef]
  11. B. Guo, “Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal,” Phys. Plasmas. 16, 043508 (2009).
    [CrossRef]
  12. H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
    [CrossRef]
  13. C. H. R. Ooi and C. H. Kam, “Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric,” J. Opt. Soc. Am. B. 27, 458–463 (2010).
    [CrossRef]
  14. S. Y. Wang, S. B. Liu, and L. W. J. Li, “Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice,” Chin. Phys. B. 19, 084101(2010).
    [CrossRef]
  15. K. Thapa, S. Srivastava, and S. Tiwari, “Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals,” J. Supercond. 23, 517–525(2010).
    [CrossRef]
  16. H. T. Hsu, F. Y. Kuo, and C. J. Wu, “Optical properties of a high-temperature superconductor operating in near zero-permittivity region,” J. Appl. Phys. 107, 053912(2010).
    [CrossRef]
  17. C. J. Wu, M. S. Chen, and T. J. Yang, “Photonic band structure for a superconductor-dielectric superlattice,” Physica C Supercond. 432, 133–139 (2005).
    [CrossRef]
  18. A. H. Aly, S. W. Ryu, H. T. Hsu, and C. J. Wu, “THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice,” Mater. Chem. Phys. 113, 382–384(2009).
    [CrossRef]
  19. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, 1996).
  20. H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors,” Phys. Rev. B. 67, 245109(2003).
    [CrossRef]
  21. Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochiku, “Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+delta,” Phys. Rev. Lett. 75, 4512–4515 (1995).
    [CrossRef] [PubMed]
  22. C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B. 61, 5920–5923 (2000).
    [CrossRef]
  23. C. J. Wu, “Field solution of nonlinear magnetic surface wave for a planar superconductor-antiferromagnet transmission line,” J. Appl. Phys. 104, 063909 (2008).
    [CrossRef]
  24. X. K. Kong, S. B. Liu, H. F. Zhang, and C. Z. Li, “A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma,” Phys. Plasmas. 17, 103506 (2010).
    [CrossRef]
  25. Y. T. Fang and Z. B. Ouyang, “An approximately omnidirectional defect mode of the TE wave from one-dimensional photonic crystals doped by negative-index materials,” J. Opt. A Pure Appl. Opt. 11, 045103 (2009).
    [CrossRef]
  26. R. L. Kautz, “Picosecond pulses on superconducting striplines,” J. Appl. Phys. 49, 308–314 (1978).
    [CrossRef]

2010 (6)

H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
[CrossRef]

C. H. R. Ooi and C. H. Kam, “Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric,” J. Opt. Soc. Am. B. 27, 458–463 (2010).
[CrossRef]

S. Y. Wang, S. B. Liu, and L. W. J. Li, “Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice,” Chin. Phys. B. 19, 084101(2010).
[CrossRef]

K. Thapa, S. Srivastava, and S. Tiwari, “Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals,” J. Supercond. 23, 517–525(2010).
[CrossRef]

H. T. Hsu, F. Y. Kuo, and C. J. Wu, “Optical properties of a high-temperature superconductor operating in near zero-permittivity region,” J. Appl. Phys. 107, 053912(2010).
[CrossRef]

X. K. Kong, S. B. Liu, H. F. Zhang, and C. Z. Li, “A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma,” Phys. Plasmas. 17, 103506 (2010).
[CrossRef]

2009 (3)

Y. T. Fang and Z. B. Ouyang, “An approximately omnidirectional defect mode of the TE wave from one-dimensional photonic crystals doped by negative-index materials,” J. Opt. A Pure Appl. Opt. 11, 045103 (2009).
[CrossRef]

B. Guo, “Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal,” Phys. Plasmas. 16, 043508 (2009).
[CrossRef]

A. H. Aly, S. W. Ryu, H. T. Hsu, and C. J. Wu, “THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice,” Mater. Chem. Phys. 113, 382–384(2009).
[CrossRef]

2008 (1)

C. J. Wu, “Field solution of nonlinear magnetic surface wave for a planar superconductor-antiferromagnet transmission line,” J. Appl. Phys. 104, 063909 (2008).
[CrossRef]

2007 (1)

J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90, 261111 (2007).
[CrossRef]

2006 (1)

S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
[CrossRef]

2005 (1)

C. J. Wu, M. S. Chen, and T. J. Yang, “Photonic band structure for a superconductor-dielectric superlattice,” Physica C Supercond. 432, 133–139 (2005).
[CrossRef]

2004 (1)

H. Takeda and K. Yoshino, “TE-TM mode coupling in two-dimensional photonic crystals composed of liquid-crystal rods,” Phys. Rev. E. 70, 026601 (2004).
[CrossRef]

2003 (2)

C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
[CrossRef]

H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors,” Phys. Rev. B. 67, 245109(2003).
[CrossRef]

2002 (1)

E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B. 65, 155120 (2002).
[CrossRef]

2000 (1)

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B. 61, 5920–5923 (2000).
[CrossRef]

1999 (1)

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

1997 (1)

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B. 55, 7427–7444 (1997).
[CrossRef]

1996 (1)

M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, 1996).

1995 (1)

Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochiku, “Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+delta,” Phys. Rev. Lett. 75, 4512–4515 (1995).
[CrossRef] [PubMed]

1991 (1)

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B. 44, 8565–8571 (1991).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1978 (1)

R. L. Kautz, “Picosecond pulses on superconducting striplines,” J. Appl. Phys. 49, 308–314 (1978).
[CrossRef]

Aly, A. H.

A. H. Aly, S. W. Ryu, H. T. Hsu, and C. J. Wu, “THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice,” Mater. Chem. Phys. 113, 382–384(2009).
[CrossRef]

Au Yeung, T. C.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B. 61, 5920–5923 (2000).
[CrossRef]

Bauer, J.

J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90, 261111 (2007).
[CrossRef]

Burresi, M.

S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
[CrossRef]

Chen, M. S.

C. J. Wu, M. S. Chen, and T. J. Yang, “Photonic band structure for a superconductor-dielectric superlattice,” Physica C Supercond. 432, 133–139 (2005).
[CrossRef]

Erni, D.

E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B. 65, 155120 (2002).
[CrossRef]

Fang, Y. T.

Y. T. Fang and Z. B. Ouyang, “An approximately omnidirectional defect mode of the TE wave from one-dimensional photonic crystals doped by negative-index materials,” J. Opt. A Pure Appl. Opt. 11, 045103 (2009).
[CrossRef]

Fu, R. T.

C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
[CrossRef]

Gaifullin, M. B.

Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochiku, “Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+delta,” Phys. Rev. Lett. 75, 4512–4515 (1995).
[CrossRef] [PubMed]

Geobaldo, F.

S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
[CrossRef]

Giorgis, F.

S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
[CrossRef]

Gottardo, S.

S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
[CrossRef]

Guo, B.

B. Guo, “Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal,” Phys. Plasmas. 16, 043508 (2009).
[CrossRef]

Hafner, C.

E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B. 65, 155120 (2002).
[CrossRef]

Hsu, H. T.

H. T. Hsu, F. Y. Kuo, and C. J. Wu, “Optical properties of a high-temperature superconductor operating in near zero-permittivity region,” J. Appl. Phys. 107, 053912(2010).
[CrossRef]

A. H. Aly, S. W. Ryu, H. T. Hsu, and C. J. Wu, “THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice,” Mater. Chem. Phys. 113, 382–384(2009).
[CrossRef]

Hu, X. H.

C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
[CrossRef]

John, S.

J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90, 261111 (2007).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Kadowaki, K.

Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochiku, “Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+delta,” Phys. Rev. Lett. 75, 4512–4515 (1995).
[CrossRef] [PubMed]

Kam, C. H.

C. H. R. Ooi and C. H. Kam, “Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric,” J. Opt. Soc. Am. B. 27, 458–463 (2010).
[CrossRef]

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B. 61, 5920–5923 (2000).
[CrossRef]

Kautz, R. L.

R. L. Kautz, “Picosecond pulses on superconducting striplines,” J. Appl. Phys. 49, 308–314 (1978).
[CrossRef]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Kong, X. K.

X. K. Kong, S. B. Liu, H. F. Zhang, and C. Z. Li, “A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma,” Phys. Plasmas. 17, 103506 (2010).
[CrossRef]

Kumagai, K.

Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochiku, “Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+delta,” Phys. Rev. Lett. 75, 4512–4515 (1995).
[CrossRef] [PubMed]

Kuo, F. Y.

H. T. Hsu, F. Y. Kuo, and C. J. Wu, “Optical properties of a high-temperature superconductor operating in near zero-permittivity region,” J. Appl. Phys. 107, 053912(2010).
[CrossRef]

Kuzmiak, V.

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B. 55, 7427–7444 (1997).
[CrossRef]

Lee, H. M.

H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
[CrossRef]

Li, C. Z.

X. K. Kong, S. B. Liu, H. F. Zhang, and C. Z. Li, “A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma,” Phys. Plasmas. 17, 103506 (2010).
[CrossRef]

Li, L. W. J.

S. Y. Wang, S. B. Liu, and L. W. J. Li, “Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice,” Chin. Phys. B. 19, 084101(2010).
[CrossRef]

Li, Y. Z.

C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
[CrossRef]

Lim, T. K.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B. 61, 5920–5923 (2000).
[CrossRef]

Liu, S. B.

X. K. Kong, S. B. Liu, H. F. Zhang, and C. Z. Li, “A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma,” Phys. Plasmas. 17, 103506 (2010).
[CrossRef]

S. Y. Wang, S. B. Liu, and L. W. J. Li, “Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice,” Chin. Phys. B. 19, 084101(2010).
[CrossRef]

Liu, X. H.

C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
[CrossRef]

Maradudin, A. A.

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B. 55, 7427–7444 (1997).
[CrossRef]

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B. 44, 8565–8571 (1991).
[CrossRef]

Matsuda, Y.

Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochiku, “Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+delta,” Phys. Rev. Lett. 75, 4512–4515 (1995).
[CrossRef] [PubMed]

Mochiku, T.

Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochiku, “Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+delta,” Phys. Rev. Lett. 75, 4512–4515 (1995).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B. 65, 155120 (2002).
[CrossRef]

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Ooi, C. H. R.

C. H. R. Ooi and C. H. Kam, “Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric,” J. Opt. Soc. Am. B. 27, 458–463 (2010).
[CrossRef]

Ouyang, Z. B.

Y. T. Fang and Z. B. Ouyang, “An approximately omnidirectional defect mode of the TE wave from one-dimensional photonic crystals doped by negative-index materials,” J. Opt. A Pure Appl. Opt. 11, 045103 (2009).
[CrossRef]

Ozaki, M.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Pallavidino, L.

S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
[CrossRef]

Plihal, M.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B. 44, 8565–8571 (1991).
[CrossRef]

Raymond Ooi, C. H.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B. 61, 5920–5923 (2000).
[CrossRef]

Ryu, S. W.

A. H. Aly, S. W. Ryu, H. T. Hsu, and C. J. Wu, “THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice,” Mater. Chem. Phys. 113, 382–384(2009).
[CrossRef]

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Srivastava, S.

K. Thapa, S. Srivastava, and S. Tiwari, “Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals,” J. Supercond. 23, 517–525(2010).
[CrossRef]

Takeda, H.

H. Takeda and K. Yoshino, “TE-TM mode coupling in two-dimensional photonic crystals composed of liquid-crystal rods,” Phys. Rev. E. 70, 026601 (2004).
[CrossRef]

H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors,” Phys. Rev. B. 67, 245109(2003).
[CrossRef]

Thapa, K.

K. Thapa, S. Srivastava, and S. Tiwari, “Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals,” J. Supercond. 23, 517–525(2010).
[CrossRef]

Tinkham, M.

M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, 1996).

Tiwari, S.

K. Thapa, S. Srivastava, and S. Tiwari, “Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals,” J. Supercond. 23, 517–525(2010).
[CrossRef]

Wang, S. Y.

S. Y. Wang, S. B. Liu, and L. W. J. Li, “Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice,” Chin. Phys. B. 19, 084101(2010).
[CrossRef]

Wiersma, D.

S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
[CrossRef]

Wu, C. J.

H. T. Hsu, F. Y. Kuo, and C. J. Wu, “Optical properties of a high-temperature superconductor operating in near zero-permittivity region,” J. Appl. Phys. 107, 053912(2010).
[CrossRef]

A. H. Aly, S. W. Ryu, H. T. Hsu, and C. J. Wu, “THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice,” Mater. Chem. Phys. 113, 382–384(2009).
[CrossRef]

C. J. Wu, “Field solution of nonlinear magnetic surface wave for a planar superconductor-antiferromagnet transmission line,” J. Appl. Phys. 104, 063909 (2008).
[CrossRef]

C. J. Wu, M. S. Chen, and T. J. Yang, “Photonic band structure for a superconductor-dielectric superlattice,” Physica C Supercond. 432, 133–139 (2005).
[CrossRef]

Wu, J. C.

H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
[CrossRef]

Xu, C.

C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

Yang, T. J.

C. J. Wu, M. S. Chen, and T. J. Yang, “Photonic band structure for a superconductor-dielectric superlattice,” Physica C Supercond. 432, 133–139 (2005).
[CrossRef]

Yoshino, K.

H. Takeda and K. Yoshino, “TE-TM mode coupling in two-dimensional photonic crystals composed of liquid-crystal rods,” Phys. Rev. E. 70, 026601 (2004).
[CrossRef]

H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors,” Phys. Rev. B. 67, 245109(2003).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Zhang, H. F.

X. K. Kong, S. B. Liu, H. F. Zhang, and C. Z. Li, “A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma,” Phys. Plasmas. 17, 103506 (2010).
[CrossRef]

Zi, J.

C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90, 261111 (2007).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Chin. Phys. B. (1)

S. Y. Wang, S. B. Liu, and L. W. J. Li, “Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice,” Chin. Phys. B. 19, 084101(2010).
[CrossRef]

J. Appl. Phys. (4)

H. T. Hsu, F. Y. Kuo, and C. J. Wu, “Optical properties of a high-temperature superconductor operating in near zero-permittivity region,” J. Appl. Phys. 107, 053912(2010).
[CrossRef]

H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
[CrossRef]

C. J. Wu, “Field solution of nonlinear magnetic surface wave for a planar superconductor-antiferromagnet transmission line,” J. Appl. Phys. 104, 063909 (2008).
[CrossRef]

R. L. Kautz, “Picosecond pulses on superconducting striplines,” J. Appl. Phys. 49, 308–314 (1978).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

Y. T. Fang and Z. B. Ouyang, “An approximately omnidirectional defect mode of the TE wave from one-dimensional photonic crystals doped by negative-index materials,” J. Opt. A Pure Appl. Opt. 11, 045103 (2009).
[CrossRef]

J. Opt. Soc. Am. B. (1)

C. H. R. Ooi and C. H. Kam, “Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric,” J. Opt. Soc. Am. B. 27, 458–463 (2010).
[CrossRef]

J. Supercond. (1)

K. Thapa, S. Srivastava, and S. Tiwari, “Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals,” J. Supercond. 23, 517–525(2010).
[CrossRef]

Mater. Chem. Phys. (1)

A. H. Aly, S. W. Ryu, H. T. Hsu, and C. J. Wu, “THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice,” Mater. Chem. Phys. 113, 382–384(2009).
[CrossRef]

Phys. Plasmas. (2)

X. K. Kong, S. B. Liu, H. F. Zhang, and C. Z. Li, “A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma,” Phys. Plasmas. 17, 103506 (2010).
[CrossRef]

B. Guo, “Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal,” Phys. Plasmas. 16, 043508 (2009).
[CrossRef]

Phys. Rev. B. (6)

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B. 61, 5920–5923 (2000).
[CrossRef]

H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors,” Phys. Rev. B. 67, 245109(2003).
[CrossRef]

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B. 44, 8565–8571 (1991).
[CrossRef]

C. Xu, X. H. Hu, Y. Z. Li, X. H. Liu, R. T. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B. 68, 193201 (2003).
[CrossRef]

E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B. 65, 155120 (2002).
[CrossRef]

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B. 55, 7427–7444 (1997).
[CrossRef]

Phys. Rev. E. (2)

H. Takeda and K. Yoshino, “TE-TM mode coupling in two-dimensional photonic crystals composed of liquid-crystal rods,” Phys. Rev. E. 70, 026601 (2004).
[CrossRef]

S. Gottardo, M. Burresi, F. Geobaldo, L. Pallavidino, F. Giorgis, and D. Wiersma, “Self-alignment of liquid crystals in three-dimensional photonic crystals,” Phys. Rev. E. 74, 040702 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochiku, “Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+delta,” Phys. Rev. Lett. 75, 4512–4515 (1995).
[CrossRef] [PubMed]

Physica C Supercond. (1)

C. J. Wu, M. S. Chen, and T. J. Yang, “Photonic band structure for a superconductor-dielectric superlattice,” Physica C Supercond. 432, 133–139 (2005).
[CrossRef]

Other (1)

M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of a one-dimensional photonic crystal.

Fig. 2
Fig. 2

PBG of the 1DSDPCs for a = 190 nm , ε a = 10 , b = 10 nm , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , T = 4.2 K , ε c = 1 , N = 80 . (a) Transmittance and (b) dispersion relation of the 1DSDPC versus frequency.

Fig. 3
Fig. 3

Transmittance of the 1DSDPCs at different thicknesses of the superconductor slabs b = 10 , 40, and 80 nm , respectively ( a = 190 nm , ε a = 10 , ε c = 1 , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , T = 4.2 K , N = 80 ).

Fig. 4
Fig. 4

Transmittance of the finite structure ( A B ) N obtained by the TMM ( a = 190 nm , ε a = 10 , ε c = 1 , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , T = 4.2 K , N = 80 ). The results are consistent with that of Fig. 3.

Fig. 5
Fig. 5

Transmittance of the 1DSDPCs at different thicknesses of the dielectric slabs a = 60 , 140, and 190 nm , respectively ( b = 10 nm , ε c = 1 , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , T = 4.2 K , ε a = 10 , N = 80 ).

Fig. 6
Fig. 6

Transmittance of the finite structure ( A B ) N obtained by the TMM ( b = 10 nm , ε c = 1 , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , T = 4.2 K , ε a = 10 , N = 80 ). The result is consistent with that of Fig. 5.

Fig. 7
Fig. 7

Transmittance of the 1DSDPCs at different temperatures of the superconductor slab T = 1 , 6, and 8 K , respectively ( a = 190 nm , ε a = 10 , b = 10 nm , ε c = 1 , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , N = 80 ).

Fig. 8
Fig. 8

Transmittance of the finite structure ( A B ) N obtained by the TMM ( b = 10 nm , ε c = 1 , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , a = 190 nm , ε a = 10 , N = 80 ). The result is consistent with that of Fig. 7.

Fig. 9
Fig. 9

Transmittance of the finite structure ( A B ) N obtained by the TMM with the contribution of the NCEs of the superconductor ( b = 10 nm , ε c = 1 , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , a = 190 nm , ε a = 10 , N = 80 ).

Fig. 10
Fig. 10

Transmittance of the 1DSDPCs at different damp coefficients of the superconductor layer γ = 0 , 10 5 , 10 9 and 10 12 Hz , respectively ( a = 190 nm , ε a = 10 , b = 10 nm , ε c = 1 , T c = 9.2 K , λ L ( 0 ) = 83.4 nm , T = 6 K , N = 80 ).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε b ( ω ) = ε c [ 1 ω s p 2 ω 2 ω n p 2 ω ( ω + i γ ) ] ,
ω s p = ( n s e 2 m ε 0 ε c ) 1 / 2 ,
ω n p = ( n n e 2 m ε 0 ε c ) 1 / 2 ,
ω s p = c λ L ( T ) ε c = c λ L ( 0 ) ε c [ 1 ( T T c ) 4 ] 1 / 2 ,
ω n p = ω s p n n / n s .
ω n p = c λ L ( 0 ) ε c ( T T c ) 2 .
ε b ( ω , T ) = ε c c 2 ω 2 λ L ( 0 ) 2 [ 1 ( T T c ) 4 ] c 2 ω ( ω + i γ ) λ L ( 0 ) 2 ( T T c ) 4 .
ε b ( ω , T ) = ε c c 2 ω 2 λ L ( 0 ) 2 [ 1 ( T T c ) 4 ] .
r = x 11 η 0 + x 12 η 0 η n + 1 x 21 x 22 η 0 x 11 η 0 + x 12 η 0 η n + 1 + x 21 + x 22 η 0 ,
t = 2 η 0 x 11 η 0 + x 12 η 0 η n + 1 + x 21 + x 22 η 0 ,
cos ( K d ) = cos δ a cos δ b 0.5 ( η a η b + η b η a ) sin δ a sin δ b ,

Metrics